Arxiu d'etiquetes: wasp sting

Known the Asian hornet or ‘assassin hornet’ in 5 steps

In recent years, reports of invasive species entering the Iberian Peninsula have grown at an alarming rate. One of the most recent cases is that of the Asian hornet, also known as the yellow-legged hornet and dramatically called ‘assassin hornet’, which is well-stablished in northern regions of the Iberian Peninsula and which has recently been confirmed to nest in the very center of Barcelona.

What do we know about this species? Why is it known as the ‘assassin hornet’?

1. Where does it come from and how did it get here?

The Asian hornet (Vespa velutina) is a social wasp native to the Southeast Asia. It was for the first time recorded in Europe in 2004, at southeast France, where it is currently well-spread. According to most of sources, it is believed that some founding queens accidentally arrived France inside boxes of pottery from China.

Some associations of beekeepers from the Basque Country confirmed the presence of the Asian hornet in the Iberian Peninsula in 2010. From that moment on, the Asian hornet started spreading toward other regions: it was recorded in Galicia in 2011, in Northern Catalonia and in some areas of Aragon in 2012, in some areas of La Rioja and Cantabria in 2014 and in Mallorca, in 2015.

Dynamic map by José Luis Ordóñez – CREAF

Meanwhile, this species spread toward Italy, Portugal, Germany, Belgium, Sweden and, occasionally, the United Kingdom. It presence in Japan and Korea, where it is an invasive species too, was confirmed some years before.

It was recorded for the first time in Catalonia in its northern comarques (‘counties’), specifically in Alt Empordà, and in 2015 almost 100 nests of this species had already been recorded. Nowadays, the Asian hornet is well-spread in Girona and Barcelona provinces.

On July 13th of this year (2018), the Generalitat de Catalunya (Government of Catalonia) confirmed the first record of an Asian hornet nest located in the very center of Barcelona city, close to one of the main buildings of the University of Barcelona; a few days before, it had also been detected in Vallès Oriental and Baix Llobregat.

2. How can we identify it?

The Asian hornet size varies between 2 and 3.5 cm, approximately. Queens and workers have a similar morphology except for their size, being workers smaller than queens.

This species can be recognized by the following morphological traits:

  • Thorax entirely black.
  • Abdomen mainly black except for its 4th segment, which is yellow.
  • Anterior half of legs, black; posterior half, yellow.
  • Upper part of head, black; face reddish yellow.
Dorsal and ventral view of Vespa velutina. Picture by Didier Descouens, Muséum de Toulouse, CC 3.0.

If you think you have found an Asian hornet and meant to notify authorities, first of all make sure it is the correct species. This is of special importance as some native species like the European hornet (Vespa crabro) are usually confused with its invasive relative, thus leading to misidentifications and removings of native nests.

Vespa crabro. Picture by Ernie, CC 3.0.

3. Why is it also called ‘assassin hornet’?

The Asian hornet is neither more dangerous, venomous nor aggressive than other European wasps. So, why is it dramatically called ‘assassin hornet’?

Larvae of this species feed on honeybees caught by adult hornets. Honeybees usually represent more than 80% of their diet, while the remaining percentage is compound of other arthropods. Adult hornets fly over hives and hunt the most exposed honeybees, even at flight. A single hornet can hunt between 25 and 50 honeybees per day. Hornets usually quarter them and get only the thorax, which is the most nutritious part.

In Asia, some honeybees have developed surprising defensive mechanisms to fight against their predators, like forming swarms around hornets to cause them a heat shock.

Take a look to this video to known some more about this strategy (caso of Japanese honeybees and hornets):

On the contrary, European honeybees have different defensive strategies that seem to be less effective against invasive hornets than they are against the European ones, which are also less ravenous their Asiatic relatives and their nests, smaller. In addition, the absence of natural predators that help to control their populations makes their spreading even more easier.

Several associations of both beekeepers and scientists from Europe have been denouncing this situation for years, since this invasive species is causing severe damages to both the economy (honey and crop production) and the environment (loss of wildlife -insects and plants- biodiversity) due to the decrease in wild and domestic honeybees.

4. How do their nests look like and what I have to do if I find one?

Asian hornets usually make their nests far from the ground, on the top of trees (unlike the European hornets, which never construct their nest on trees at great highs); rarely, nests can be found on buildings near non-perturbated areas or in the ground. Nests are spherical-shaped, have a continuous growth, a single opening in their superior third from which internal cells cannot be appreciated (in European hornet’s nests, the opening is in its inferior part and internal cells can be observed through it) and can reach up to 1 m height and 80 cm diameter. Nests are made by chewed and mixed wood fibers, leaves and saliva.

Nest of Asian hornet. Picture by Fredciel, CC 3.0.

If you find an Asian hornet nest, be careful and don’t hurry: don’t get to close to it (it is recommended to stay at least 5m far from the nest), observe and study the nest and observe if there are adults overflying it. If you find a dead specimen, you can try to identify it (REMEMBER: always staying far from the nest!). Anyway, the most recommendable thing is to be careful and call the authorities (in Spain, to the emergency phone number: 112).

5. There are preventive and management measures?

Currently, preventive and management measures proposed are the following:

  • Protocols for a more efficient detection of nests.
  • Early detection of the hornet by installing traps.
  • Constitution of an efficient communication net to provide information of the presence of this species between regions.
  • Removal of nests.
  • Capture of queens.
  • Improving the habitat quality to minimize the settlement of the Asian hornet and enhacing the settlement of native bees.
  • Study the possible introduction of natural enemies.

In the following link, you can download the PDF (in Spanish) made by the Spanish Government (2014) where these and more strategies are widely explained.

Citizen participation is a key point when fighting against the spreading of an invasive species; the same happens with the Asian hornet. Some associations of beekeepers, like the Galician Beekeeping Association (Asociación Gallega de Apicultura, AGA) and its campaign Stop Vespa Velutina, give educational conferences about this species and place traps to control their populations. Also, some students of the University of the Balear Islands have developed a mobile app to inform about the expansion of the Asian hornet.

.          .          .

Although knowledge of this species has been improved, there is still much work to be done. We will see how its populations evolve in the coming years.

Main picture by Danel Solabarrieta on Flickr, CC 2.0.

 

Venomous and poisonous arthropods: what makes them different?

After talking about venomous mammals, fishes and lizards, ‘All you need is Biology’ brings you this post about venomous and poisonous arthropods. We will try to explain you what makes them different and which arthropods produce some kind of toxic substance (and how they do it). It will probably surprise you!

Venomous vs poisonous animals

Although some people normally use these words interchangeably, they really mean the same? The answer is NO.

A venomous animal develops specialized organs or elements (such as fangs, teeth or stings) to actively inoculate venom inside the body of their victim as an offensive or defensive mechanism. On the other hand, a poisonous animal does not develop these type of organs, but specialized tissues or glands that produce toxins that are released passively as a defensive system; others acquire these substances from their diet. Sometimes, the toxin is not produced in any specific organ, but integrated within body tissues as a defense against predation.

Despite these differences, once in the body venoms and toxins can cause similar damage, which depends on their mode of action, the assimilated amount and the victim’s features. In humans, effects caused by these substances range from irritation, inflammation or redness to severe systemic damage in cases of powerful poisons.

Venomous and poisonous arthropods

Arachnids

Arachnids (subphylum Cheliceromorpha) include two of the better known venomous arthropods: spiders and scorpions. Both groups develop specialized organs to inoculate venomous substances which use either to hunt and defend themselves against predators or potential enemies.

  • Spiders

The specialized organs for venom inoculation in spiders are the chelicerae, a pair of preoral appendices typical of Cheliceromorpha which they use to grab the food. Spiders’ chelicerae, which are fang-shaped, are related to basal venom glands. These fangs have an internal duct that finish in a terminal opening through which venom is released and injected inside victims’ bodies like a hypodermic needle.

Spiders have the most evolved form of chelicerae: jackknife chelicerae. The two parts of the chelicerae come together like a folding knife, and when threatening to attack, the spiders rise the chelicerae and open the angle of the fangs.

Spider’s chelicerae. Public domain image (CC0) obtained from pixabay.

Some of the most dangerous spiders for humans are the Australian funnel-web spiders (genera Atrax, Hadronyche and Illawarra). Their venom is toxic to sodium channels, which results in the massive release of neurotransmitters.

“Funnel web spider” of the species Hadronyche cerberea. Have you noticed the drop of venom in its chelicer?. Picture by Alan Couch on Flickr (CC 2.0).
  • Scorpions

The most distal part of the scorpion tail, the telson (an additional segment found in several arthropods), has become a venomous organ that ends in a stinger. Like chelicerae in spiders, telson in scorpions is related to venom glands that contain toxic substances.

Scorpion of the species Centruroides vittatus, common in the middle of EUA and in the north of Mexico. In red, telson ended in a sting. Public domain image (CC0).

Scorpion venom is usually rich in neurotoxins that alter both the central and the peripheral nervous system of the victim by dissociating the parasympathetic and sympathetic nervous systems. In humans, the effects of their sting vary from intense local pain (with minor inflammation) to cardiac arrhythmias and acute pulmonary edema, like in the Indian species Hottentotta tamulus, which is considered one of the most venomous scorpions in the world.

BE CAREFUL! Neither all arachnids nor related groups are venomous; e. g. harvestmen, camel spiders and whip spiders (Amblypygi) ARE NOT venomous.

From left to right: harvestman (Daniel Jolivet on Flickr, CC 2 .0), camel spider (CC 3.0) and whip spider (Geoff Gallice on Flickr).

Myriapoda

The subphylum Myriapoda is divided in two classes: Diplopoda (millipedes) and Chilopoda (centipedes), and both produce toxic substances.

  • Millipedes

Millipedes, which have an elongated body composed of a lot of segments with two pairs of legs (rarely just one pair), are detritivores and inoffensive. However, they release toxins (alkaloids, benzoquinones, phenols) as a defensive mechanism to prevent predation. Some of these released substances are caustic and can burn the exoskeleton of other arthropods or cause skin and mucous inflammation in bigger animals.

Millipede toxins are produced inside repugnatorial or odoriferous glands and then excreted through small micropores located at both sides of the body when being crushed or feeling threatened.

At the first sight, micropores are difficult to see. Picture by Thomas Shahan on Flickr (CC 2.0).

TRIVIA: black lemurs from Madagascar (Eulemur macaco) grab and bite millipedes to stimulate their secretions, and then rub them all over their body. It is thought that lemurs cover themselves on millipede’s toxins since these work as insect repellent.

If you want to learn some more about this behaviour, don’t miss the following video. We recommend you to stay until the end…the final result will probably surprise you!

  • Centipedes

Centipedes also have a segmented body like millipedes; however, each segment has just a pair of legs. While millipedes are detritivores, centipedes are carnivorous arthropods that hunt their preys actively. To do so, they have developed two large forcipules originated from the first pair of legs which can inject venom contained in glands in the trunk of the animal. They also bite when feeling threatened.

Forcipules of Scolopendra cingulata, by Eran Finkle (CC 3.0).

The Scolopendra genus causes the most severe injuries. However, despite causing an intense pain when stinging, almost all envenomations caused by centipedes spontaneously resolve without complications.

Insects

Despite their diversity, there exist just a few cases of venomous/poisonous insects (class Insecta).

  • Beetles

Some beetle families (Coleoptera order), such as Meloidae, Oedemeridae and Staphylinidae (Paederus and Paederidus genera) contain toxins within their hemolymph which are released by compression as a defensive strategy against predators. These substances cause skin burns, redness and inflammation in humans.

Sptaphylinidae of the species Paederus littoralis, from Spain, France and Italy. Picture by Alvesgaspar (CC 4.0).

Meloidae and Oedemeridae hemolymph contain cantharidine, while the one of Paederus and Paederidus contains pederine, a substance that is exclusive of females of these beetles and of certain marine sponges, and which is thought to be produced by symbiont bacteria.

  • Bugs

Although some bugs (suborder Heteroptera) are better known for being disease vectors, they also cause different types of skin injuries in humans due to the release of caustic and inflammatory substances as a defense when being compressed (e. g. Pentatomidae family) or by the injection of salivary enzymes that are normally used to kill and dissolve preys (e. g. Belostomatidae family).

Belostomatidae. Public domain image (CC0).
  • Hymenopterans

Most of wasps, bees and ants (Hymenoptera order) produce toxins as a defensive mechanism. In most of those cases, females develop a stinger at the end of the abdomen resulting from the evolution of the ovipositor (Aculeata infraorder); however, there are also some groups that defend themselves by biting.

Ants (Formicidae family) usually attack by biting, but some species, such as those in the group of the fire ants (Solenopsis spp.) and the bullet ants (Paraponera spp., Dinoponera spp.), also have stingers like bees and wasps. Formic acid probably is the best-known toxin produced by ants, but is unique to the Formicinae subfamily; fire ants, for example, inject piperidine alkaloids. The sting of the bullet ants, which are distributed throughout center and south America, is considered the most painful sting for humans caused by an insect according to the Schmidt Index (which considers it to be as painful as a gunshot!).

Red ant of the species Solenopsis invicta (left, public domain image (CC0)) and bullet ant of the species Paraponera clavata (right, April Nobile / © AntWeb.org / CC BY-SA 3.0).

Females of most of bees and wasps within the Aculeata group develop an abdominal stinger. Their venom is usually rich in phospholipases, producing effects ranging from local inflammation to severe anaphylactic reactions (when suffering of hypersensibility or after being attacked by thousands of insects, as it has happened several times with the killer bee in America). The sting of the tarantula hawk (Pepsis formosa) from Mexico and southern USA, is considered the second most painful after the one of the bullet ant.

Pepsis formosa, a tarantula hawk. Public domain image (CC0).
  • Butterflies and moths

A lot of butterflies and moths (Lepidoptera order) produce toxins either during their larval stages, adulthood or both as a defensive mechanism against predation.

Sometimes, caterpillars are covered by urticant bristles or hairs that cause skin lesions (erucism), as in the case of the pine processionary (Thaumetopoea pityocampa), a harmful plague for pines which is very spread in southern Europe and America.

Pine processionary caterpillar nest, by John H. Ghent (CC 3.0).

On the other hand, adults of some species, like those of the monarch butterfly (Danaus plexippus) and Zygaena spp., both showing flashy colors (aposematism, a type of animal mimicry), develop toxins within their corporal tissues to prevent predation. The monarch butterfly obtains these substances by feeding on toxic plants of the Asclepias genus.

Zygaena transalpina, by gailhampshire (CC 2.0).

.             .             .

Have you found this information interesting? Do you know any other venomous or poisonous arthropod? Feel free to leave your comments below!

References

The main image is of public domain (CC0) and was downloaded from Pixabay.

Bees and wasps: some myths and how to tell them apart

Despite being part of the same order of insects (Hymenoptera), bees and wasps have well differentiated traits and habits; however, it is very common for people to confuse them. In this post, we will give some simple clues to differentiate between them, and deny some of the most common myths that revolve around these organisms.

Bees and wasps: how to tell them apart

Before differentiating them visually, we should start by classifying them.

Both bees and wasps are part of the Hymenoptera order, which are characterized by two pairs of membranous wings that remain coupled during the flight thanks to a series of tiny hooks (hamuli); in addition, they usually present antennae more or less long, of 9-10 segments at minimum, and an ovopositor that, in certain groups, has evolved to become a sting. Within this order, both bees and wasps are classified within the Apocrita suborder, which are characterized by having a “waist” that separates the thorax from the abdomen.

As for Apocrita, this suborder is traditionally divided in two groups: “Parasitica” and “Aculeata”, which we’ve already mentioned in the postWhat are parasitoid insects and what are they useful for?:

  • Parasitica”: very abundant superfamilies of wasps that parasite arthropods (chalcidoidea, ichneumonoidea, cynipoidea, etc.), except for the family Cynipidae (gall wasps), which parasite plants. None of these wasps have a sting, so no worries!
  • Aculeata”: includes most of the so-called wasps and bees (as well as ants), most of which have stings.

So far, we can see that there are a large number of parasitic wasps that differ clearly from the rest of bees and wasps with sting. If we continue to deepen, within the “Aculeata” we typically distinguish three superfamilies:

  • Chrysidoidea: group formed by parasite wasps (many of them kleptoparasites) and parasitoids. The Chrysididae family (cuckoo wasps) is very popular due to its metallic coloration.
  • Apoidea: includes bees and bumblebees, as well as the formerly known as “sphecoid wasps”, most of which have become part of another family of Apoidea (Crabronidae)
  • Vespoidea: mostly formed by the typical stinged wasps (eg Vespidae family) and ants.
Cuckoo wasp (Chrysididae). Author: Judy Gallagher on Flickr, CC.

Simple keys to differentiate

After this review, many will think that this separation of wasps and bees is not so simple; and those of you who do will be right. While bees and bumblebees belong to a monophyletic lineage (this is, a group that includes the most recent common ancestor and all their descendants) and their characters are quite clear, the concept of wasp is somewhat vaguer.

Here are some basic morphological and behavioral traits to differentiate the most common wasps and bees. These traits are easy to spot in a simple way, and in the eyes of expert entomologists, they may be very general (there are many other complex characters that make it possible to differentiate them); however, they can be useful when you do not have much experience:

  • Bees (and specially bumblebees) tend to be more robust and hairy than wasps. Wasps do not show “hair” and tend to be slender, with thorax and abdomen more widely separated.
Left: western honey bee (Apis mellifera); author: Kate Russell on Flickr, CC. Right: wasp from the genus Polistes; author: Daniel Schiersner on Flickr, CC.
  • Most of bees present corporal adaptations for the collection of pollen, which they receive the name of scopa. In most, these are limited to the presence of many hairs on the hind legs. However, there are special cases: in the western honey bee (Apis mellifera), in addition to having pilosities, the tibias of the hind legs are very widened, forming a kind of blades with which they collect the pollen; on the other hand, the solitary bees of the Megachilidae family do not have pilosities on the hind legs, but a series of hairs on the ventral side of the abdomen.
Left: western honey bee (Apis mellifera) with the hind legs full of pollen; author: Bob Peterson on Flickr, CC. Right: Megachile versicolor, with the scopa in the ventral side of the abdomen; author: janet graham on Flickr, CC.
  • Most wasps have chewing mouthparts (jaws retain their function), while in most bees mouthparts are lapping type, as we explained in the post “Evolutionary adaptations of feeding in insects”.
  • Some wasps, especially certain parasites and parasitoids, present a much simpler wing venation, represented by a few marginal veins. This is the case, for example, of the families Chalcidoidea and Cynipidae.
Halticoptera flavicornis male, Chalcidoidea (a parasitoid wasp); author: Martin Cooper on Flickr, CC.
  • If you see a slender hymenopteran with a very long “sting”, do not be afraid: it is probably the female of a parasitoid (eg a member of the family Ichneumonidae), and that long “sting” its ovipositor.
Ichneumonidae female of the species Rhyssa persuasoria; author: Hectonichus, CC.
  • Many wasps fly with legs more or less extended because, with rare exceptions, they are hunters.
  • As we approach a plant with flowers, we will observe a large number of insects flying and perching on them. Almost certainly, most hymenopterans we will observe will be bees, since all adults and almost all larvae are phytophagous (they feed on plant products), namely nectar and pollen.
Western honey bee. Public domain (Zero-CC0).
  • If you’ve ever left food in the open, you must have seen a hymenopteran come to it. The larvae of most wasps are carnivorous, so adults take the least opportunity to catch prey for their offspring … or bits of something that you are eating.
Author: rupp.de, CC.

This is not over yet: myth busting

Now that we know how to differentiate them roughly, let’s confirm or deny some of the most common myths around bees and wasps:

  • “Wasps do not pollinate plants

False. It is true that bees play a very important role in pollination: their feeding based on the intake of nectar and pollen makes them visit many flowers and, in addition, they present many pilosities in which it is adhered. However, most adult wasps also ingest nectar, in addition to other foods. Although they do not present as many pilosities as bees, the mere fact of visiting flowers causes that their body comes in contact with pollen and part of it is adhered.

There is also the opposite case: some bees such as Hylaeus and Nomada (the latter known as cuckoo bees, kleptoparasite bees whose larvae feed on pollen stored in nests of other solitary bees) do not have adaptations for pollen transport, and their appearance is closer to that of a wasp.

Left: Hylaeus signatus male; author: Sarefo, CC. Right: solitary bee of the genus Nomada; author: Judy Gallagher, CC.
  • All bees are herbivorous, and all wasps carnivorous

False. Although almost all bee larvae feed on pollen and nectar, while wasp larvae do on prey that adults hunt or parasite, there are exceptions. The larvae of gall wasps (Cynipidae family) feed on the plant tissue of the gall itself where they develop, whereas the larvae of a small group of bees of the Meliponini tribe (genus Trigona), present in the Neotropics and in The Indo-Australian region, feed on carrion, the only bees are known non-herbivorous.

  • Bees form colonies, and wasps are solitary

False. There are both colonial and solitary wasps and bees. Honey bees are the most typical colonial bee, but there is an enormous diversity of solitary bees that build small nests in pre-established cavities or ones they dig. In the same way, there are also colonial wasps, like some of the genus Polistes (paper wasps) that build hives in which certain hierarchical roles are established (although they are usually smaller than those of bees).

  • All bees and wasps can sting

False. The bees of the Meliponini tribe, also called stingless bees, have a sting so small that it lacks a defensive function, so they present other methods to defend themselves (biting with their jaws). In addition, females of some bees (eg Andrenidae family) do not present sting. Of course, all male bees and wasps have no sting, as that it is the modified ovipositor.

  • “Bees die when they sting; wasps can sting several times”

Partly true. In honey bees of the species Apis mellifera, the surface of the sting is covered with a series of beards that give it the look of a saw, so that when removed, the sting is nailed to the surface of its victim, dragging behind it all the abdominal content to which the sting is adhered. In wasps, solitary bees and bumblebees, on the other hand, the surface of the sting is almost smooth or the beards are very small, being able to retract them and thus remove the sting without problems.

Sting of Apis mellifera; author: Landcare Research, CC.
  • “Wasps are more aggressive than bees

It depends. Wasps commonly nest anywhere, so people and other animals are more likely to come into contact with them. By contrast, bees often have preferences for certain places, usually more protected, not being so exposed. However, this is not always how it happens: the african bees, to which we dedicated a post, can nest almost anywhere and they are very aggressive!

  • Wasps are more colorful than bees

False. In fact, partially false. Having no apparent hair, the color of wasps is usually more striking in general terms. However, there are genera of bees, such as the solitary Anthidium (which present a very striking abdominal coloration) or the orchid bees, which look similiar to wasps. In the same way, there are wasps of dark coloration and less jazzy.

Anthidium florentium male; author: Alvesgaspar, CC.

.        .         .

Despite there are much more differences between bees and wasps, we hope these tips can help you to tell them apart…and to love them the same way!

REFERENCES

Main images property of Kate Russell, CC (Left) and Daniel Schiersner, CC (Right).