Arxiu d'etiquetes: William Osler

Pharmacogenetics: a drug for each person

Sometimes, some people say that the medications prescribed by doctors are not good. Can this be true? Not all drugs work for the same population. Keep reading and discover the secrets of pharmacogenetics.

INTRODUCTION

The same that happens with nutrients, happens with drugs. Another objective of personalized medicine is to make us see that not all medicines are for everyone. However, it does not come again because around 1900, the Canadian physician William Osler recognized that there was an intrinsic and specific variability of everyone, so that each one reacts differently to a drug. This is how, years later, we would define pharmacogenetics.

It is important to point out that it is not the same as pharmacogenomics, which studies the molecular and genetic bases of diseases to develop new treatment routes.

First, we need to start at the beginning: what is a drug? Well, a drug is any physicochemical substance that interacts with the body and modifies it, to try to cure, prevent or diagnose a disease. It is important to know that drugs regulate functions that our cells do, but they are not capable of creating new functions.

Apart from knowing if a drug is good or not for a person, you also have to take into account the amount that should be administered. And we still do not know the origin of all diseases, that is, we do not know most of the real molecular and genetic causes of diseases.

The classification of diseases is based mainly on symptoms and signs and not on molecular causes. Sometimes, the same group of pathologies is grouped, but among them there is a very different molecular basis. This means that the therapeutic efficacy is limited and low. Faced with drugs, we can manifest a response, a partial response, that produces no effect or that the effect is toxic (Figure 1).

efectivitat i toxicitat
Figure 1. Drug toxicity. Different colours show possible responses (green: drug not toxic and beneficial; blue: drug not toxic and not beneficial; red: drug toxic but not beneficial; yellow: drug toxic but beneficial) (Source: Mireia Ramos, All You Need is Biology)

DRUGS IN OUR BODY

Drugs usually make the same journey through our body. When we take a drug, usually through the digestive tract, it is absorbed by our body and goes to the bloodstream. The blood distributes it to the target tissues where it must take effect. In this case we talk about active drug (Figure 2). But this is not always the case, but sometimes it needs to be activated. That’s when we talk about a prodrug, which needs to stop in the liver before it reaches the bloodstream.

Most of the time, the drug we ingest is active and does not need to visit the liver.

active and prodrug
Figure 2. Difference between prodrug and active drug (Source: Agent of Chemistry – Roger Tam)

Once the drug has already gone to the target tissue and has interacted with target cells, drug waste is produced. These wastes continue to circulate in the blood to the liver, which metabolizes them to be expelled through one of the two routes of expulsion: (i) bile and excretion together with the excrement or (ii) purification of the blood by the kidneys and the urine.

THE IMPORTANCE OF PHARMACOGENETICS

A clear example of how according to the polymorphisms of the population there will be different response variability we find in the transporter genes. P glycoprotein is a protein located in the cell membrane, which acts as a pump for the expulsion of xenobiotics to the outside of the cell, that is, all chemical compounds that are not part of the composition of living organisms.

Humans present a polymorphism that has been very studied. Depending on the polymorphism that everyone possesses, the transporter protein will have normal, intermediate or low activity.

In a normal situation, the transporter protein produces a high excretion of the drug. In this case, the person is a carrier of the CC allele (two cytokines). But if you only have one cytosine, combined with one thymine (both are pyrimidine bases), the expression of the gene is not as good, and the expulsion activity is lower, giving an intermediate situation. In contrast, if a person has two thymines (TT), the expression of the P glycoprotein in the cell membrane will be low. This will suppose a smaller activity of the responsible gene and, consequently, greater absorption in blood since the drug is not excreted. This polymorphism, the TT polymorphism, is dangerous for the patient, since it passes a lot of drug to the blood, being toxic for the patient. Therefore, if the patient is TT the dose will have to be lower.

This example shows us that knowing the genome of each individual and how their genetic code acts based on it, we can know if the administration of a drug to an individual will be appropriate or not. And based on this, we can prescribe another medication that is better suited to this person’s genetics.

 APPLICATIONS OF THE PHARMACOGENETICS

The applications of these disciplines of precision medicine are many. Among them are optimizing the dose, choosing the right drug, giving a prognosis of the patient, diagnosing them, applying gene therapy, monitoring the progress of a person, developing new drugs and predicting possible adverse responses.

The advances that have taken place in genomics, the design of drugs, therapies and diagnostics for different pathologies, have advanced markedly in recent years, and have given way to the birth of a medicine more adapted to the characteristics of each patient. We are, therefore, on the threshold of a new way of understanding diseases and medicine.

And this occurs at a time when you want to leave behind the world of patients who, in the face of illness or discomfort, are treated and diagnosed in the same way. By routine, they are prescribed the same medications and doses. For this reason, the need has arisen for a scientific alternative that, based on the genetic code, offers to treat the patient individually.

REFERENCES

  • Goldstein, DB et al. (2003) Pharmacogenetics goes genomic. Nature Review Genetics 4:937-947
  • Roden, DM et al. (2002) The genetic basis of variability in drug responses. Nature Reviews Drug Discovery 1:37-44
  • Wang, L (2010) Pharmacogenomics: a system approach. Syst Biol Med 2:3-22
  • Ramos, M. et al. (2017) El código genético, el secreto de la vida. RBA Libros
  • Main picture: Duke Center for Applied Genomics & Precision Medicine

MireiaRamos-angles2

 

La farmacogenética: un fármaco para cada persona

¿Quién no ha escuchado a alguien quejarse de que los medicamentos recetados por los médicos no le hacen nada? ¿Puede ser cierto esto? No todos los fármacos sirven para la misma población. Sigue leyendo y descubre los secretos de la farmacogenética. 

INTRODUCCIÓN

Lo mismo que sucede con los nutrientes, pasa con los fármacos. Otro de los objetivos de la medicina personalizada es hacernos ver que no todos los medicamentos sirven para todas las personas. Sin embargo, no nos viene de nuevo porque hacia 1900, el médico canadiense William Osler reconoció que existía una variabilidad intrínseca y propia de cada individuo, de forma que cada uno reacciona de forma diferente ante un fármaco. Es así como años más tarde definiríamos la farmacogenética.

Es importante señalar que no es lo mismo que la farmacogenómica, la cual estudia las bases moleculares y genéticas de las enfermedades para desarrollar nuevas vías de tratamiento.

Antes de todo necesitamos empezar por el principio: ¿qué es un fármaco? Pues bien, un fármaco es toda sustancia fisicoquímica que interactúa con el organismo y lo modifica, para tratar de curar, prevenir o diagnosticar una enfermedad. Es importante saber que los fármacos regulan funciones que hacen nuestras células, pero no son capaces de crear nuevas funciones.

A parte de conocer si un fármaco es bueno o no para una persona, también se tiene que tener en cuenta la cantidad que se debe administrar de él. Y es que todavía no conocemos el origen de todas las enfermedades, es decir, desconocemos la mayoría de las causas moleculares y genéticas reales de las enfermedades.

La clasificación de las enfermedades se basa principalmente en síntomas y signos y no en las causas moleculares. A veces, un mismo grupo de patologías es agrupado, pero entre ellos existe una base molecular muy diferente. Esto comporta que la eficacia terapéutica sea limitada y baja. Frente a los fármacos, podemos manifestar una respuesta, una respuesta parcial, que no nos produzca ningún efecto o que el efecto sea tóxico (Figura 1).

efectivitat i toxicitat
Figura 1. Efectividad y toxicidad de un fármaco en la población. Los diferentes colores muestran las diferentes respuestas (verde: efectivo y seguro; azul: seguro, pero no efectivo; rojo: tóxico y no efectivo; amarillo: tóxico, pero efectivo) (Fuente: Mireia Ramos, All You Need is Biology)

LOS FÁRMACOS EN NUESTRO CUERPO

Los fármacos acostumbran a hacer el mismo recorrido por nuestro cuerpo. Cuando nos tomamos un fármaco, normalmente por vía digestiva, éste es absorbido por nuestro cuerpo y va a parar al torrente sanguíneo. La sangre lo distribuye a los tejidos diana donde tiene que hacer efecto. En este caso hablamos de fármaco activo (Figura 2). Pero esto no siempre es así, sino que a veces necesita activarse. Es entonces cuando hablamos de profármaco, el cual necesita hacer escala en el hígado antes de aterrizar al torrente sanguíneo.

La mayoría de las veces, el fármaco que ingerimos es activo y no necesita pasar a visitar al hígado.

active and prodrug
Figura 2. Diferencia entre un profármaco y un fármaco activo (Fuente: Agent of Chemistry – Roger Tam)

Una vez el fármaco ya ha ido al tejido diana y ha interactuado con las células en cuestión, se producen desechos del fármaco. Estos desechos continúan circulando por la sangre hasta llegar al hígado, quien los metaboliza para expulsarlos por una de las dos vías de expulsión: (i) la bilis y excreción junto con los excrementos o (ii) la purificación de la sangre por los riñones y la orina.

LA IMPORTANCIA DE LA FARMACOGENÉTICA

Un claro ejemplo de cómo según los polimorfismos de la población habrá diferente variabilidad de respuesta lo encontramos en los genes transportadores. La glicoproteína P es una proteína situada en la membrana de las células, que actúa como bomba de expulsión de xenobióticos hacia el exterior de la célula, es decir, todos los compuestos químicos que no formen parte de la composición de los organismos vivos.

Los humanos presentamos un polimorfismo que ha sido muy estudiado. Dependiendo del polimorfismo que posea cada individuo, la proteína transportadora tendrá una actividad normal, intermedia o baja.

En una situación normal, la proteína transportadora produce una excreción bastante alta del fármaco. En este caso, la persona es portadora del alelo CC (dos citosinas). Pero si sólo tiene una citosina, combinada con una timina (ambas son bases pirimidínicas), la expresión del gen no es tan buena y la actividad de expulsión es menor, dando una situación intermedia. En cambio, si una persona presenta dos timinas (TT), la expresión de la glicoproteína P en la membrana de la célula será baja. Esto supondrá una menor actividad del gen responsable y, consecuentemente, mayor absorción en sangre ya que el fármaco no es excretado. Este polimorfismo, el polimorfismo TT, es peligroso para el paciente, ya que pasa mucho fármaco a la sangre, resultando tóxico para el paciente. Por lo tanto, si el paciente es TT la dosis tendrá que ser menor.

Este ejemplo nos demuestra que conociendo el genoma de cada individuo y cómo actúa su código genético en base a él, podemos saber si la administración de un fármaco a un individuo será la adecuada o no. Y en base a esto, podemos recetar otro medicamento que se adapte mejor a la genética de esta persona.

APLICACIONES DE LA FARMACOGENÉTICA

Las aplicaciones de estas disciplinas de la medicina de precisión son muchas. Entre ellas se encuentran optimizar la dosis, escoger el fármaco adecuado, dar un pronóstico del paciente, diagnosticarlos, aplicar la terapia génica, monitorizar el progreso de una persona, desarrollar nuevos fármacos y predecir posibles respuestas adversas.

Los progresos que han tenido lugar en la genómica, el diseño de fármacos, terapias y diagnósticos para las diferentes patologías, han avanzado notablemente en los últimos años, y ha dado paso al nacimiento de una medicina más adaptada a las características de cada paciente. Nos encontramos, por lo tanto, en el umbral de una nueva manera de entender las enfermedades y la medicina.

Y esto se produce en una época en la que se quiere dejar atrás el mundo de pacientes que ante una dolencia o malestar son atendidos y diagnosticados de la misma forma. Por rutina, se les prescriben los mismos medicamentos y dosis. Por este motivo ha surgido la necesidad de una alternativa científica que, basada en el código genético, ofrece tratar al enfermo de manera individualizada.

REFERENCIAS

  • Goldstein, DB et al. (2003) Pharmacogenetics goes genomic. Nature Review Genetics 4:937-947
  • Roden, DM et al. (2002) The genetic basis of variability in drug responses. Nature Reviews Drug Discovery 1:37-44
  • Wang, L (2010) Pharmacogenomics: a system approach. Syst Biol Med 2:3-22
  • Ramos, M. et al. (2017) El código genético, el secreto de la vida. RBA Libros
  • Foto portada: Duke Center for Applied Genomics & Precision Medicine

MireiaRamos-castella2

La farmacogenètica: un fàrmac per a cada persona

Qui no ha sentit a algú queixar-se de que els medicaments receptats pels metges no li fan res? Pot ser això cert? No tots els fàrmacs serveixen per a la mateixa població. Segueix llegint i descobreix els secrets de la farmacogenètica.

INTRODUCCIÓ

El mateix que passa amb els nutrients, passa amb els fàrmacs. Un altre dels objectius de la medicina personalitzada és fer-nos veure que no tots els medicaments serveix per a totes les persones. No obstant, això no és nou perquè cap allà al 1900, el metge canadenc William Osler va reconèixer que existia una variabilitat intrínseca i pròpia de cada individu, de manera que cada persona reacciona de forma diferent davant d’un fàrmac. És així com anys més tard definiríem la farmacogenètica.

És important assenyalar que no és el mateix que la farmacogenómica, la qual estudia les bases moleculars i genètiques de les malalties per desenvolupar noves vies de tractament.

Abans de tot necessitem començar pel principi: què és un fàrmac? Doncs bé, un fàrmac és tota substància fisicoquímica que interactua amb l’organisme i el modifica, per tractar de curar, prevenir o diagnosticar una malaltia. És important saber que els fàrmacs regulen funcions que fan les nostres cèl·lules, però no són capaces de crear noves funcions.

A part de conèixer si un fàrmac és bo o no per a una persona, també s’ha de tenir en compte la quantitat d’aquest que s’ha d’administrat. I és que encara no coneixem l’origen de totes les malalties, és a dir, desconeixem la majoria de les causes moleculars i genètiques reals de les malalties.

La classificació de les malalties es basa principalment en símptomes i signes i no en les causes moleculars. A vegades, un mateix grup de patologies és agrupat, però entre ells existeix una base molecular molt diferent. Això comporta que l’eficàcia terapèutica sigui limitada i baixa. Davant els fàrmacs, podem manifestar una resposta, una resposta parcial, que no ens produeixi cap efecte o que l’efecte sigui tòxic (Figura 1).

efectivitat i toxicitat
Figura 1. Efectivitat i toxicitat d’un fàrmac a la població. Els diferents colors mostren les diferents respostes (verd: efectiu i segur; blau: segur, però no efectiu; vermell: tòxic i no efectiu; groc: tòxic, però efectiu) (Font: Mireia Ramos, All You Need is Biology)

ELS FÀRMACS AL NOSTRE COS

Els fàrmacs acostumen a fer el mateix recorregut pel nostre cos. Quan ens prenem un fàrmac, normalment per via digestiva, aquest és absorbit pel nostre cos i va a parar al torrent sanguini. La sang el distribueix als teixits diana on ha de fer efecte. En aquest cas parlem de fàrmac actiu (Figura 2). Però no sempre és així, sinó que a vegades necessita activar-se. És llavors quan parlem de profàrmac, el qual necessita fer escala al fetge abans d’aterrar al torrent sanguini.

La majoria de les vegades, el fàrmac que ingerim és actiu i no necessita passa a visitar al fetge.

active and prodrug
Figura 2. Diferència entre un profármac i un fármac actiu (Font: Agent of Chemistry – Roger Tam)

Una vegada que el fàrmac ja ha anat al teixit diana i ha interactuat amb les cèl·lules en qüestió, es produeixen deixalles del fàrmac. Aquestes restes continuen circulant per la sang fins a arribar al fetge, que els metabolitza per a expulsar-los per una de les dues vies d’expulsió: (i) la bilis i excreció junt amb els excrements o (ii) la purificació de la sang pels ronyons i la orina.

LA IMPORTÀNCIA DE LA FARMACOGENÈTICA

Un clar exemple de com segons els polimorfismes de la població hi haurà diferent variabilitat de resposta el trobem en els gens transportadors. La glicoproteïna P és una proteïna situada a la membrana de les cèl·lules, que actua com a bomba d’expulsió de xenobiòtics cap a l’exterior de la cèl·lula, és a dir, tots els compostos químics que no formen part de la composició dels organismes vius.

Els humans presentem un polimorfisme que ha estat molt estudiat. Depenent del polimorfisme que posseeixi cada individu, la proteïna transportadora tindrà una activitat normal, intermèdia o baixa.

En una situació normal, la proteïna transportadora produeix una excreció bastant alta del fàrmac. En aquest cas, la persona és portadora de l’al·lel CC (dues citosines). Però si només té una citosina, combinada amb una timina (totes dues són bases pirimidíniques), l’expressió del gen no és tant bona i l’activitat d’expulsió és menor, donant una situació intermèdia. En canvi, si una persona presenta dues timines (TT), l’expressió de la glicoproteïna P a la membrana de la cèl·lula serà baixa. Això suposarà una menor activitat del gen responsable i, conseqüentment, major absorció en sang ja que el fàrmac no és excretat. Aquest polimorfisme, el polimorfisme TT, és perillós pel pacient, ja que passa molt fàrmac a la sang, resultant tòxic pel pacient. Per tant, si el pacient és TT la dosis haurà de ser menor.

Aquest exemple ens demostra que coneixent el genoma de cada individu i com actua segons el seu codi genètic en base a ell, podem saber si l’administració d’un fàrmac a un individu serà l’adequada o no. I en base a això, podem receptar un altre medicament que s’adapti millor a la genètica d’aquesta persona.

APLICACIONS DE LA FARMACOGENÈTICA

Les aplicacions d’aquestes disciplines de la medicina de precisió són moltes. Entre elles es troben optimitzar la dosi, escollir el fàrmac adequat, donar un pronòstic del pacient, diagnosticar-lo, aplicar la teràpia gènica, monitoritzar el progrés d’una persona, desenvolupar nous fàrmacs i predir possibles respostes adverses.

Els progressos que han tingut lloc en la genòmica, el disseny de fàrmacs, teràpies i diagnòstics per a les diferents patologies, han avançat notablement en els últims anys, i han donat pas al naixement d’una medicina més adaptada a les característiques de cada pacient. Ens trobem, per tant, al llindar d’una nova manera d’entendre les malalties i la medicina.

I això es produeix en una època en la que es vol deixar enrere el món de pacients que davant una malaltia o malestar són atesos i diagnosticats de la mateixa manera. Per rutina, se’ls prescriuen els mateixos medicaments i dosis. Per aquest motiu ha sorgit la necessitat d’una alternativa científica que, basada en el codi genètic, ofereix tractar al malalt de manera individualitzada.

REFERÈNCIES

  • Goldstein, DB et al. (2003) Pharmacogenetics goes genomic. Nature Review Genetics 4:937-947
  • Roden, DM et al. (2002) The genetic basis of variability in drug responses. Nature Reviews Drug Discovery 1:37-44
  • Wang, L (2010) Pharmacogenomics: a system approach. Syst Biol Med 2:3-22
  • Ramos, M. et al. (2017) El código genético, el secreto de la vida. RBA Libros
  • Foto portada: Duke Center for Applied Genomics & Precision Medicine

MireiaRamos-catala2