Arxiu d'etiquetes: yubarta

Cetáceos con dialectos: la orca y el cachalote

La semana pasada, la prensa estaba llena de noticias sobre un artículo que resaltaba que los cachalotes del Pacífico Este tenían dialectos. Por este motivo, el artículo de esta semana expondrá qué es un dialecto (en cetáceos), qué cetáceos tienen dialectos y cuál es su origen.

INTRODUCCIÓN

La primera pregunta que se debe responder es “¿Qué es un dialecto ?”. La pregunta no es sencilla ya que a veces este concepto se confunde con otro: variación geográfica. Mientras que los dialectos son diferencias en canciones entre poblaciones vecinas que potencialmente se pueden reproducir entre ellas, una variación geográfica se refiere a las diferencias de las canciones entre poblaciones que están muy separadas en el espacio y que normalmente no se encuentran nunca. En el caso de los dialectos, la explicación de su presencia es el aprendizaje social, mientras que en las variaciones geográficas la razón se encuentra en sus genes. La función de los dialectos es de actuar como firma acústica para mantener la cohesión y la integridad de los grupos o como mecanismo para evitar la reproducción con otros grupos.

CETÁCEOS CON DIALECTOS

Hasta la fecha, los dialectos han sido descritos en dos especies de cetáceo: la orca (Orcinus orca) y el cachalote (Physeter macrocephalus). Estas dos especies tienen algunas características en común:

  • Viven en grupos matrilineales, es decir, grupos muy estables de individuos unidos por el descendiente maternal que sirve para protegerse contra los depredadores y otras amenazas.
  • Viven en sociedades multinivel, que consisten en niveles sociales anidados de forma jerárquica. Del nivel más alto al más bajo, hay tres niveles: clanes vocales, unidades sociales e individuos. Este tipo de sociedades son también presentes en humanos y otros primates y en elefantes africanos.

DIALECTOS EN ORCAS

Se han encontrado dialectos en orcas residentes del Pacífico noreste, de Noruega y de Kamchatka. En esta especie, estos dialectos consisten en repertorios de diferentes tipos de canto que son diferentes entre los pods (grupos familiares complejos y muy cohesionados) . Cada pod tiene características distintivas en sus repertorios de cantos y, así, cada pod tiene un dialecto particular. Los pods que comparten parte de sus repertorios constituyen clanes acústicos o vocales. Por tanto, cada clan es acústicamente diferente. Los pods de diferentes clanes pueden superponerse e interactuar y los pods nuevos se pueden formar por fisión de otros, lo que origina divergencias en los dialectos.

Killer whales are one of the cetacean species with dialects (Picture: Oceanwide Science Institute).
Las orcas (Orcinus orca) son una de las especies de cetáceos con dialectos (Foto: Oceanwide Science Institute).

DIALECTOS EN CACHALOTES

Los cachalotes tienen repertorios que varían en la proporción de uso de los diferentes tipos de codas y clases. Las codas de los cachalotes son secuencias estereotipadas de 3-40 clics de banda ancha que duran menos de 3 segundos en total, cuya función es ayudar a mantener la cohesión del grupo, reforzar las uniones, ayudar en las negociaciones y en la toma de decisiones colectiva. Estos grupos con diferentes dialectos también interaccionan. Para dar un ejemplo concreto, en el Pacífico Sur y el Caribe, hay seis clanes acústicos o vocales simpátricos basados ​​en el compartimento de las codas, que simultáneamente difieren en los patrones de movimiento y de uso de hábitat y en el éxito alimentario.

Dialects have been described in sperm whales (Physeter macrocephalus) (Picture: CBC News).
Los dialectos han sido descritos en cachalotes (Physeter macrocephalus) (Foto: CBC News).

ORIGEN DE LOS DIALECTOS EN CETÁCEOS

Un artículo publicado recientemente en la revista Nature sugiere un mecanismo que explicaría el origen de las sociedades multinivel en cachalotes. Como hemos visto, es en estas sociedades donde los dialectos están presente en cetáceos. Por lo tanto, explicaremos el origen de las sociedades multinivel en cachalotes como ejemplo.

En cachalotes, el nivel superior de las sociedades multinivel son los clanes de individuos que se comunican entre ellos utilizando codas similares. Estos clanes se originan por transmisión cultural de las codas a través del aprendizaje social sesgado, cuando aprenden las codas más comunes (conformismo) de los individuos con un comportamiento similar (homofilia). Así, el resultado son grupos con un comportamiento cada vez más homogéneo con una fuerte integración. La transmisión cultural juega un papel clave en la partición de los cachalotes en clanes simpátricos (clanes que viven juntos pero que no se reproducen entre ellos). Por tanto, es en estos clanes donde pueden aparecer los patrones de comportamiento distintivos, como los dialectos. El nivel inferior, las unidades sociales, se originan a partir de las limitaciones y beneficios ecológicos, cognitivos y temporales.

 

Sociedades multinivel. Los individuos ( estrellas y círculos llenos ) son el nivel inferior y en asociación ( líneas negras ) con otros individuos forman unidades sociales (círculos negros vacíos ) . Las unidades sociales con similaridad acústica (líneas naranjas ) forman clanes vocales ( color azul y verde ) ( Foto : Marco Arenas Campos ) .
Sociedades multinivel. Los individuos (estrellas y círculos llenos) son el nivel inferior y en asociación (líneas negras) con otros individuos forman unidades sociales (círculos negros vacíos). Las unidades sociales con similaridad acústica (líneas naranjas) forman clanes vocales (color azul y verde) (Foto: Marco Arenas Campos).

LA BALLENA JOROBADA O YUBARTA: UN CASO DIFERENTE

Las diferencias entre las canciones de las ballenas jorobadas (Megaptera novaeangliae) no pueden considerarse dialectos ya que tienen lugar entre poblaciones geográficamente aisladas. Debido al aislamiento geográfico y reproductivo, estas diferencias han aparecido como resultado de diferencias genéticas entre las poblaciones.

REFERENCIAS

  • Cantor, M; Shoemaker, LG; Cabral, RB; Flores, CO, Varga, M & Whitehead, H (2015). Multilevel animal societies can emerge from cultural transmission. Nature Communications. 6:8091. DOI: 10.1038/ncomms9091
  • Conner, DA (1982). Dialects versus geographic variation in mammalian vocalizations. Animal Behaviour. 30, 297-298
  • Dudzinski, KM; Thomas, JA & Gregg, JD (2009). Communication in Marine Mammals. In Perrin W, Würsig B & Thewissen JGM (edit.). Encyclopedia of Marine Mammals. Academic Press (2 ed).
  • Ford, JKB (2009). Dialects. In Perrin W, Würsig B & Thewissen JGM (edit.). Encyclopedia of Marine Mammals. Academic Press (2 ed).

Difusió-castellà

¿Cómo se comunican las ballenas?

El artículo de esta semana está dedicado a la comunicación de los misticetos, es decir, los cetáceos que se alimentan gracias a la presencia de unas barbas de queratina. En concreto, veremos la comunicación acústica en los misticetos y nos fijaremos en un caso concreto: el de la ballena jorobada o yubarta. 

INTRODUCCIÓN

Antes de empezar a hablar sobre la comunicación en las ballenas, quiero aclarar el concepto ballena. Éste proviene del inglés whale, que en este idioma significa “gran cetáceo”, de manera que encontraremos en concepto tanto en odontocetos (cetáceos con dientes) como en los misticetos (cetáceos con barbas). De todas formas, debido a malas traducciones, en castellano el concepto ballena se refiere exclusivamente al grupo de los misticetos. En este artículo, pues, tomaremos la palabra ballena como equivalente de misticetos.

Bradbury y Vehrencamp definieron el término comunicación como el proceso a través del cual se da una información a través de una señal de un emisor a un receptor, de manera que el receptor utiliza esta información para decidir cómo responder o si responder a ella.

Hay distintos tipos de comunicación en los mamíferos marinos, ya sea química, visual, táctil o acústica. Debido a que la luz solar tiene una capacidad limitada de penetrar en el agua, las ballenas y otros mamíferos marinos tienen dificultades para comunicarse visualmente a cierta distancia, de manera que se comunican a través del sonido. Además, la comunicación química no es demasiado eficiente en el medio acuático.

EL PROCESO COMUNICATIVO EN BALLENAS

Producción y recepción del sonido

Mientras que se han encontrado estructuras anatómicas específicas para la producción y transmisión de sonidos en el caso de los odontocetos, en los misticetos no se han encontrado de equivalentes. En los misticetos, a pesar de tener laringe, les faltan las cuerdas bucales. Aún así, se cree que los senos craneales, cavidades vacías de los huesos craneales, están implicados en la fonación, aunque no se conoce con precisión como interviene.

Las grandes ballenas son los mamíferos mamíferos con las emisiones acústicas más sonoras. Las ballenas jorobadas o yubartas (Megaptera novaeangliae) emiten cantos de una gran capacidad, los cuales pueden durar horas y tienen tanta fuerza que pueden escucharse fuera del agua, lo que no es muy habitual. Bajo el agua, pueden recorrer grandes distancias, hasta varios kilómetros de distancia. Las ballenas azules (Balaenoptera musculus) y los rorcuales comunes (Balaenoptera physalis) no se quedan atrás: emiten sonidos de baja frecuencia que pueden viajar más de 3.200 km de distancia. De hecho, las ballenas azules generan sonidos de hasta 190 decibelios, los sonidos más fuertes producidos por un animal.

La balena blava (Balaenoptera musculus) pot generar sons de fins a 190 db (Foto: iTravel Cabo).
La ballena azul (Balaenoptera musculus) puede generar sonidos de hasta 190 db (Foto: iTravel Cabo).

Varios estudios de comportamiento han demostrado que todos los cetáceos, pero especialmente los odontocetos, tienen buen oído.

Función

Mientras que algunos expertos defienden que son utilizados para comunicarse a grandes distancias, otros sugieren que permite detectar el relieve submarino para poderse orientar (ecolocalización). De todas formas, gran parte de la comunidad científica cree que tienen una función comunicativa, incluyendo comportamientos como la exhibición y el establecimiento del territorio, entre otros.

EL CASO DE LAS BALLENAS JOROBADAS

La ballena jorobada (Megaptera novaeangliae), como ya se ha mencionado antes, produce sonidos muy complejos y que pueden recorrer grandes distancias. Se trata de uno de los misticetos más sonoros. Durante el invierno, en las zonas de apareamiento, estas ballenas producen canciones largas y muy complejas, en una misma zona. Se han encontrado diferencias entre ballenas jorobadas de diferentes zonas. Estos cantos (puedes escuchar uno aquí) tienen una duración de 10-15 minutos, aunque las pueden cantar durante horas, y están formadas por temas, frases y subfrases. Cada subfrase tiene una duración de segundos y está formada por sonidos de baja frecuencia (normalmente inferiores a los 1500 Hz).

Estructura del cant de les balenes de gep (Megaptera novaengliae) (Foto: Hawai's Marine Mammal Consortium).
Estructura del canto de les ballenas jorobadas (Megaptera novaeangliae) (Foto: Hawai’s Marine Mammal Consortium).

La complejidad, pero, no acaba aquí. La estructura de estas obras musicales va cambiando a lo largo del invierno. No sólo cambian la frecuencia y duración de las frases y los temas, sino que algunas de estas son substituidas por otras de nuevas. Además, también modifican la composición y secuencia de los temas a lo largo del tiempo.

De todas formas, hay que decir que todas las ballenas de una misma zona cantan la misma canción y que todas modifican los cantos a la misma velocidad que el resto de compañeras. Así pues, parecer ser que unas aprenden los cantos de otras.

Algunos estudios han puesto de relieve que son los machos adultos los únicos que generan estos cantos. Así pues, todo parece indicar que estos cantos tienen un papel importante en la reproducción, similar al canto de los pájaros. Por lo tanto, estos cantos indican a las hembras de qué especie se trata, su sexo, la posición que ocupa, que está a punto para el apareamiento y para competir con el resto de machos.

Así pues, ¿por qué cantan todos los machos a la vez? Un estudio de Mobley y Herman (1985) determinó que el hecho que los machos canten de forma simultánea estimula la sincronización de la ovulación de las hembras.

El cant simultani dels mascles estimula la sincronització de la ovulació de les femelles de balena de gep. (Foto: Yellowmagpie).
El canto simultáneo de los machos estimula la sincronización de la ovulación de las hembras de ballena jorobada (Foto: Yellowmagpie).

REFERENCIAS

  • Berta A, Sumich J & Kovacs KM (2006). Marine mammlas. Evolutionary biology. Ed. Academic Press (2 ed)
  • Day (2008). Guía para observar ballenas, delfines y marsopas en su hábitat. Ed. Blume
  • Perrin WF, Würsig B & Thewissen JGM (2009). Ed. Academic Press (2 ed)
  • Reeves RR, Stewart BS, Clapham PJ & Powell JA (2005). Guía de los mamíferos marinos del mundo. Ed. Omega

Difusió-castellà

La migración de las ballenas está cambiando por el cambio global

Resultados de una investigación que ha tenido lugar de 1984 a 2010 en el Golfo de St. Lawrence (Canadá, Océano Atlántico Norte) sobre los cambios en los patrones de migración debido al cambio global ha sido publicado este Marzo en Plos One. En este artículo, vas a encontrar un resumen de dicho artículo.

INTRODUCCIÓN

El cambio global (mal llamado cambio climático) es un cambio a escala planetaria del sistema climático terrestre. A pesar de ser un proceso natural, en las últimas décadas la causa de los cambios somos los humanos ya que hemos producido un incremento de la liberación de dióxido de carbono debido a la quema de combustibles fósiles.

MIGRACIÓN DE LAS BALLENAS

El cambio global supone un desafío para las especies migratorias ya que la temporalidad de las migraciones estacionales es importante para maximizar la explotación de los picos de abundancia de las presas en las áreas de alimentación, que, a la vez, se están adaptando al calentamiento de la Tierra. Otras causes promotoras de las migraciones son el uso de recursos como el apareamiento y el resguardo. Este es el caso del rorcual común (Balaenoptera physalus) y la yubarta (Megaptera novaeangliae), que se alimentan de una gran variedad de zooplancton y crías de peces. Este zooplancton crece debido al incremento del fitoplancton, el cual crece por el incremento de la luz y los nutrientes en verano. Recuerda que en este post puedes leer sobre el comportamiento alimenticio de las yubartas. Este no es el primer artículo que indica cambios en el rango de las migraciones de las especies tanto en verano como en invierno y sus alteraciones en la temporalidad.

Fin whale (Balaenoptera physalus) (Picture from Circe).
Rorcual común (Balaenoptera physalus) (Foto de Circe).
Humpback whale (Megaptera novaengliae) (Picture from Underwater Photography Guide).
Yubarta (Megaptera novaeangliae) (Foto de Underwater Photography Guide).

Se observa un patrón general en las especies migratorias: utilizan regiones de latitudes altas en verano para aprovechar la alta productividad y abundancia de sus presas y algunas se reproducen durante este periodo. Generalmente, las especies migratorias de larga distancia se adaptan peor al cambio climático que los de corta distancia.

humpback whale migration
El caso de la migración de la yubarta (Megaptera novaeangliae) (Foto de NOAA).

Muchos misticetos empiezan las migraciones estacionales desde zonas alejadas más de centenares o miles de kilómetros, alternando entre las zonas de crianza en invierno de las latitudes bajas a las de alimentación en latitudes altas. La respuesta de los mamíferos marinos al cambio global se ha predicho:

  • Distribución más próxima al polo y llegada temprana en las áreas de alimentación para seguir el cambio de distribución de sus presas.
  • Tiempos de residencia más largos en latitudes altas como respuesta a la mejora de productividad.

Si quieres aprender más sobre el comportamiento de cetáceos y otros aspectos, puedes realizar este curso online. Más información aquí. Además, si pulsas sobre la imagen podrás cursarlo por 35€ y no por 50€ (Hay 50 cupones, hasta el 31 de marzo). 

Castellà ¿CÓMO AFECTA EL CAMBIO GLOBAL A LA MIGRACIÓN DE LAS BALLENAS?

Los resultados del artículo muestran que el rorcual común y la yubarta llegan antes en el área de estudio durante los 27 años que ha durado la investigación. De todas formas, la tasa de cambio de más de 1 día por año no se ha documentado nunca. Ambas especies también se van antes, como se ha observado en otras especies. La salida de las yubartas cambió con la misma tasa que la llegada, de manera que el tiempo de residencia se mantiene constante. Por otro lado, los rorcuales han aumentado su tiempo de residencia de 4 días a 20 días. De todos modos, este incremento está sujeto a un sesgo debido a las pocas muestras en los dos primeros años y hay una evidencia débil que los rorcuales hayan incrementado este tiempo.

migración, rorcual común, yubarta
Fecha media del primer y último avistamiento en rorcual común (Balaenoptera physalus) y yubarta (Megaptera novaeangliae) (Datos de Ramp C. et al. 2015).

Además, los resultados sugieren que la región representa sólo una fracción del potencial rango de verano de ambas especies y que las dos pasan sólo una parte del verano ahí. Lo que está claro es que ambas especies muestran las mismas adaptaciones del comportamiento y han avanzado su presencia temporal en el área un mes.

Otros estudios muestran que las ballenas grises (Eschrichtius robustus) probablemente han aturado las migraciones anuales en Alaska (Stafford K et al. 2007).

¿POR QUÉ LAS BALLENAS CAMBIAN SUS PATRONES DE MIGRACIÓN?

Parece ser que la llegada de los rorcuales en el Golfo sigue el cambio en la fecha de ruptura del hielo y la temperatura superficial del mar les indica a las ballenas que ya ha llegado el momento de regresar en el Golfo. Hay un decalaje de 13-15 semanas entre cuando el área está totalmente libre de hielo y su llegada. Ésto también se ha visto en las Azores, donde los rorcuales y yubartas llegan 15 semanas después del inicio del bloom de primavera para alimentarse mientras están de paso por la zona para ir dirección a las latitudes más altas para alimentarse en verano.

La influencia de la temperatura superficial del mar en enero en el Golfo puede haber desencadenado la salida temprana de las yubartas de las áreas de cría y así su llegada temprana en el Golfo.

Estas dos especies de ballena son consumidores generalistas y su llegada en el Golfo está relacionado con la llegada de sus presas. La mejora de la temperatura y las condiciones de luz y la rotura temprana del hielo (junto con una temperatura superficial el mar más alta) permite un bloom de fitoplancton temprano seguido del crecimiento del zooplancton. Así, la llegada temprana de los rorcuales y las yubartas les permite comer sobre sus presas. De todas formas, hay un decalaje de dos semanas entre la llegada de los rorcuales y las yubartas, lo que permite a las segundas comer sobre niveles tróficos superiores, lo que reduce la competencia.

CONCLUSIÓN

El cambio global ha cambiado la fecha de llegada de los rorcuales y yubartas en el Golfo de St. Lawrence (Canadá) a una tasa nunca documentada antes de más de 1 día por año, manteniéndose una diferencia de 2 semanas entre la llegada de las dos especies y permitiendo la separación temporal del nicho ecológico. De todas formas, la fecha de salida de ambas especies también es más temprana pero a diferentes tasas, resultando en un incremento de la superposición temporal, indicando que la separación puede estar desapareciendo. La tendencia en la llegada está relacionada con la rotura más temprana del hielo y el incremento de la temperatura superficial del mar.

REFERENCIAS

Este post se basa en el siguiente artículo:

  • Ramp C, Delarue J, Palsboll PJ, Sears R, Hammond PS (2015). Adapting to a Warmer Ocean – Seasonal Shift of Baleen Whale Movements over Three Decades. PLoS ONE 10(3): e0121374. doi: 10.1371/journal.pone.0121374

Si te ha gustado este artículo, por favor compártelo en las redes sociales. El objetivo del blog, al fin y al cabo, es divulgar la ciencia y llegar a tanta gente como sea posible. Siéntete libre de dar tus comentarios. 

Esta publicación tiene una licencia Creative Commons:

Llicència Creative Commons

Recuerda: Curso online de cetáceos. Más información aquí. Además, si pulsas sobre la imagen podrás cursarlo por 35€ y no por 50€ (Hay 50 cupones, hasta el 31 de marzo). 

Castellà

Comportamiento alimenticio en yubartas

Esta publicación se centra en la yubarta (Megaptera novaeangliae). En concreto, se va a realizar una breve introducción y, sobretodo, nos centraremos en el comportamiento alimenticio de esta especie, especialmente en una estrategia de caza de un grupo de la costa oeste de Alaska.

La yubarta o gubarte, Megaptera novaeangliae, es un cetáceo de la familia Balaenopteridae que habita en todos los océanos, en aguas oceánicas como costeras. Miden entre 12 y 16 metros (las hembras ligeramente más grandes) y pesan entre 25 y 35 toneladas. Se alimentan principalmente de krill y de bancos de peces.
Con el fin de identificarlas, nos hemos de fijar en los siguientes aspectos: la aleta caudal, con una hendidura visible en el centro y con los bordes recortados, se eleva antes de sumergirse; las aletas pectorales son muy grandes y redondeadas, con la parte superior oscura y la inferior clara; la cabeza es ancha y presenta nódulos en la parte superior y en la mandíbula inferior; y el cuerpo es voluminoso, con el lomo y los flancos entre negros y grises oscuros y el vientre blanco.

Humpback_Whale_fg1_cropped

FUENTE: http://en.m.wikipedia.org/wiki/File:Humpback_Whale_fg1_cropped.JPG

En cuanto a su comportamiento alimentario, esta especie ha desarrollado varias técnicas espectaculares. La más conocida es la denominada red de burbujas, utilizada para capturar bancos de peces. Otras menos sofisticadas consisten en echarse contra los bancos de peces o golpear el agua con las aletas para aturdir a los peces con las ondas de choque.

Aquí nos centraremos en la técnica de red de burbujas. Esta técnica ha estado observada en una población de la costa oeste de Alaska. Durante el verano, en los fiordos de Alaska hay una gran abundancia de plancton, lo que atrae a los arenques (Clupea harengus), los cuales viven en las profundidades de los fiordos para protegerse de los depredadores. Cuando las yubartas detectan la presencia de arenques, para indicarlo al resto del grupo realizan saltos y golpes de cola y cabeza contra el agua. Esta técnica requiera mucha coordinación. Siguiendo al líder, se sumergen juntos y cada uno se pone en su posición: hay los pastores, que circundan los peces con movimientos de aletas para contener al banco y evitar que escapen; otro miembro se coloca debajo del banco y emite un grito de 120 decibelios (tan estridente como disparar un cohete), para así hacer que los peces suban a la superficie y hay otro individuo en la parte superior que expulsa un corriente de aire para crear una red de burbujas. El resto de individuos se colocan debajo del banco de peces y se lanzan contra él con la boca totalmente abierta. Con esta técnica consiguen capturar media tonelada de pescado al día.

bubble net

Author: Richard Palmer

Se recomienda ver este vídeo (en inglés):

Para ampliar esta información puedes consultar:

– DAY, Trevor. Guía para observar ballenas, delfines y marsopas en su hábitat (Ed. Blume)

– KINZE, Carl Christian. Mamíferos marinos del Atlántico y del Mediterráneo (Ed. Omega)

– PERRIN, W. F.; WÜRSIG, B; THEWISSEN, J. G. M. Encyclopedia of Marine Mammals (Ed. Academic Press, 2ª edició)

– Gigantes del mar, episodi 2: http://www.youtube.com/watch?v=lSQ6d02L1jc

 

Licencia Creative Commons
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.