Arxiu d'etiquetes: Zoology

18 essential mobile applications for field trips

Gone are the days when we had to carry guides and guides to enjoy identification of species in the sea or field. Despite the nostalgia of those printed guides, today, thanks to mobile applications, any nature lover can carry in a pocket all kind of information.

As a lover of nature or biology, do not miss these 18 applications to identify and learn from everything around you. Do you need more than 18? Don’t miss part two.

BIODIVERSITY AND MAPPING

MAP OF LIFE

We start with a highlight: this wonderful application lets you know what wildlife is around you anywhere in the world. Setting on a map our location, the app will indicate us  which species can be found in the area where we are classified by groups (birds, amphibians, insects, trees, plants, fish…) in a database of more than 900,000 species.

In addition to the description, pictures, etc, of the species, we can mark if we have done any sightings, helping to provide data on the frequency of appearance of the species and having a record of our  own observations.

We can also find species directly from the browser or search field.

Available in google play market Available an APP store

BIOGUIDE – FIELD GUIDE WORLD

Bioguide allows us to have in our Android mammals, birds, reptiles, amphibians, fish, butterflies, moths, plants and mushrooms. When you open the app, it gives you the chance to choose which data download from a total of 100,000 photos and 1,000 sounds. This allows you to use them later offline in nature.

You can search by color, region, name, diet, type of flowering … Within the tab of each species, we will find all kinds of features such as habitat, conservation status, diet, locomotion, systematics, morphology and physiology, trails, similar species… a complete app to keep in mind.


BV MOBILE

This application allows us to upload photos of our observations (animals, plants, lichens or rocks) to a database of georeferenced photographs. The species will be identified and you’ll be able to save your picture with the correct name. We will also contribute to help in the understanding of biodiversity and conservation of the environment.

Available in google play market  Available an APP store

iNATURALIST

iNaturalist is another application that will allow us to raise our observations to the database Global Biodiversity Information Facility, to contribute to a better understanding of biodiversity providing data to scientists.

It is a citizen science project where you can start your own project or join one that has already started, contact the experts who identify the species you see and expand your knowledge exchanging experiences with other naturalists.

Available in google play market  Available an APP store

PEAKFINDER EARTH

How it is called the mountain in front of you? Just point your mobile towards it and you’ll know the name of the peak anywhere in the world, since its database has 250,000 references. The application has a cost of 3.39 € and works offline.

 peakfinderearth

 Available in google play market

GEODETIC POINTS

If you are looking for a free alternative,  Geodetic Points will inform you about the name, altitude and how far it is the peak are you looking at . It must be installed with the augmented reality app Layar and only reports on Spanish peaks.

Source

Available in google play market

BOTANY AND MICOLOGY

ARBOLAPP

This is a guide to wild trees of the Iberian Peninsula and Balearic Islands.

arbol capture app

In the guided search, you can describe as in a dichotomous key how the tree is until you reach its species. Then you’ll get a description of it, photographs and distribution. There is also the open search, where from the location, leaves, fruits, flowers and other features the app will guide you to the desired tree. It also has a glossary with more than 80 words and does not require internet connection to use it.

Disponible en google play market

Disponible an APP store

If you need a field guide to trees in Europe and North America, you can try iKnow Trees 2 LITE, with a database of more than 200 species (Android only).

Pl@ntNet

The “Shazam” of plants. Upload up to 4 photos of the plant you want to identify, indicate whether if it is a flower, fruit, stem… and the application will search among more than 4,000 species registered and show you what plant it is. If it is not in the database, you can register it for the rest of the community to identify it.

 Plantnet

 Available in google play market

 Available an APP store

FUNGIPEDIA

Application for identifying mushrooms with 250 species in its free version. In addition to information on the mushroom and possible toxicity of the species, in the thescription we will find the most common mistakes included, to avoid unnecessary collection of species allowing them to continue fulfilling their role in nature. The application allows working offline if you have previously downloaded the libraries with the data.

Source

In the Pro version (6.99 €), we can save the GPS location of the mushrooms that we have found. If a species is not referenced, we can add it to the database.
Available in google play market

ZOOLOGY

BIRDS OF SPAIN

If you love ornithology dot not miss this app developed by SEO Birdlife. It is divided into two sections:

  • The bird guide itself , with sheets of the 563 species of birds which are present or have been cited in Spain. In each sheet you will find the layout, drawings, photos, videos, songs and a brief description as well as the months of sighting.

  • Ornithological Itineraries: informs us of the areas of Spain where we can make our observations, with information about the ecological importance of the area and which birds can we find. Spain2 birds

    Available in google play market

    WATER BIRDS

    SEO Birdlife also has specific app Water birds to computerize census, identify wetlands closest to our location and view photos and current census of each wetland.

    Available in google play market Available an APP store

     WARBLTWIGLE AND MERLIN BIRD ID

    These three apps offer similar functions. We can consider Warbl the “Shazam” of birds. With just recording the song of a bird, the app will recognize it and it will give us information on the bird species without being connected to the network. Warbl can identify 220 UK birds. It has a cost of 5.29 €.

     warblr

    Available in google play market

    Disponible an APP store

    Field Guide birds Twigle (for iPhone) is another app that not only allows us to identify birds by their song, as Warbl, but allows  us to upload photos of any bird that we sighted and it will recognize the species from our image. It identifies species in North America, Ireland, UK and South Africa.

    Available an APP store

    If you do not have iPhone, Merlin Bird Id in its web version also allows you to recognize a photo from hundreds of species of birds in North America. It also has an application in Android and iOS for identifying birds from a few simple questions.

    INSECT ORDERS

    If you’re a fan of insects, with this application you can identify insect orders from Australia. If you do not live in Astralia, still it is a good way to learn to distinguish the characteristics that define each order, also present in your country.

     Available google play market  Available an APP store

    iFelix – WOLF

    The field notebooks by emblematic Felix Rodriguez de la Fuente revisited. If you’re a fan of wolves, with this app (€ 2.20) you will have illustrations, 3D animations, photographs, dynamic maps, sounds, utilities (camera geolocation sightings and others) and an area to practice field drawings . Ifelix wolf

    For the moment it is only available the notebook of the wolf, but they are preparing the notebooks of the imperial eagle and the Iberian lynx .

     Available in google play market Disponible an APP store

    ANIMALS TIME: ENCYCLOPEDIA

    Although the description of this application (available only in Android) indicates that it is aimed at children, the truth is that we will find a lot of information about hundreds of animal species. Curiosities, distribution, habitat, behavior, food …

    It also has specific sections for endangered and even extinct species.

     Available in google play market Available an APP store
    This is the selection of All You Need is  Biology of mobile apps touse in the field. In future articles we will complete the list with more applications like maps, compasses and other essential utilities for any naturalist. We eill also discover other applications related to biology.

    Do you know other applications to complete this list? Add it in the comments below!

    MIREIA QUEROL ALL YOU NEED IS BIOLOGY

    REFERENCES

    • Cover photo
    • All other photographs, unless otherwise indicated, obtained from the corresponding stores .

The Loch Ness Monster and Yeti: Do they exist?

The Loch Ness Monster, Yeti, Chupacabras, Bigfoot, Kraken… we’ve all heard about them once and we even doubted their (in)existence. What is the truth about these creatures? Are they real? If not, what answers gives science to refute it? Find out in this article.

CRYPTOZOOLOGY

Cryptozoology is a pseudoscience, uses scientific terms but is based on beliefs rather than evidence and does not use the scientific method. It tries to find animals that have not been confirmed by science, called cryptids. Usually are beings appeared in myths and legends, but also extinct species that it ensures they have been seen at present, as the thylacine or dinosaurs (non-avian ones). You just have to do a search in internet to find fake photos that won’t mislead the most gullible person, but when the stories are installed in the collective memory, supporters of cryptozoology increase.

sirena, juan cabana, sirena real, mermaid, real
The siren of Maracaibo, an internet viral cryptid. Despite being a sculpture of Juan Cabana, some people still believe in these fake beings. Photo: unknown

Cryptozoology usually tries to add features of real animals to cryptids to make them more credible, and even appropriates of the species discovered by biology (zoology), like when they say the Kraken is actually a giant squid.

THE LOCH NESS MONSTER

Nessie it is the most famous cryptid, a gigantic aquatic animal which is supposed to live in Loch Ness in Inverness, Scotland. As with all cryptozoological beings, evidence of their existence are fuzzy pictures and testimonies of sightings. Surely you’ve ever seen the most famous photo of the Monster:

 nessi, 1934, photo of the surgeon, the loch Ness monster, loch ness, monster
The first photo of Nessie, shot in 1934, was considered (and is considered) an evidence of their existence. 60 years after, Chris Spurling confessed that it was a fraud. Photo: Marmaduke Wheterell

This one, like all photos of the monster, have been proved to have been farces and frauds. However, they continue to fuel the myth: the annual profit in this part of Scotland are of several million euros. It is  not surprising that many lakes around the world have their own monster like Nahuelito, Caddy, Champ, Manipogo, Ponik …

WHY THE LOCH NESS MONSTER CAN’T EXIST ?

  • Its age: the first reference of a being in this lake dates back to 565. So today it would be… 1451 years old, much more than the oldest known animal: Ming the clam (507 years old). Or even more, as some cryptozoologists argue that it could be a plesiosaur or a similar animal (extinct over 65 million years ago) about 20 meters long and 10-20 tons.

     Loch Ness, otter, elephant
    Or maybe it was just an otter… Photo: Jonathan Wills
  • Origins: if it was an animal from the Age of Dinosaurs, or their descendants, it is impossible to have always lived in the lake, which was frozen since the last Ice Age until about 12,000 years ago. There are no ways of connection within the lake and the sea, there are no sightings of the montser outside the lake, so ti could never go out to the sea to feed, for example.  Assuming also Nessie was an aquatic reptile, his preference would be subtropical waters, not the cold waters of Inverness (6 ° C on average).
  • Family of Nessies: the only possible explanation for the continued existence for thousands or millions of years, is that there are no one, but at least 100 individuals like Nessie to keep a viable population, according to population ecology. The minimum viable population is the smallest isolated population having 99% chance to stay alive for 1000 years (Shaffer, 1981). In addition, the Loch Ness is 56.4 km long and 226 m deep, there is an obvious lack of space for all of them (in addition to that sightings would constant).
  • Lack of corpses: in the case that there was a group of plesiosaurs, sooner or later their bodies should appear in the bank and no one single corpse has been found.

    Elephant swimming. In 1933, the year with more sighntinghs, a circus toured the area. Its elephant apparently bathed in the lake several times. Photo: Jeremy Tucker
  • Insufficient food: the lake is deep, long and narrow (32 km x 1.6 km). As the base of the food chain on Earth are plants, in aquatic areas are phytoplankton, algae and plants that can sustain herbivores and carnivores. Loch Ness has a little surface area exposed to the sun, so do not get enough sunlight to do a massive photosynthesis. In addition, the water is dark because has turf in suspension, preventing the existence of light from a few meters depth. It is so unproductive that it could not survive a predator of more than 300 kilos. Obviously, there are few animals that are totally insufficient  for feeding one or more animals of 20 tonnes.

    cadena trofica, red alimenticia, xarxa tròfica,
    Food chain of a freshwater environment. The arrows indicate the direction of energy from one link to another. Picture: unknown
  • Lack of evidence with the latest technologies: BBC has tracked the lake several times with sonar and satellite navigation technology with negative results. Neither mini-submarines or 24 hours webcams have found no sign of the monster.

    THE YETI, THE ABOMINABLE SNOWMAN

    The second most famous cryptid is a giant bipedal ape living in the Himalayas. Or in North America (Bigfoot), Canada (Sasquatch) Almasty (Russia), Hibagon (Japan), Yowy (Australia)… Like Nessie, Bigfoot moves millions of euros/dollars and each country has its own. Also is suggested that could be some kind of extinct hominid, a Neanderthal, a  Homo erectus or a Gigantopithecus .

    yeti, huella, footprint, petjada
    Photograph which revived the legend of the Yeti (1951). Photo: Eric Shipton

    As with all cryptids, evidences are based on eyewitness sightings, blurry photos or with doubtful origin. But in this case there are hair samples ensuring that belong to the Yeti. What science says ?

    DNA ANALYSIS

    The current understanding of genetics has allowed us to establish a more precise family relationships and identify living beings through analysis of DNA. So Bryan Sykes (Oxford University) led a study that analyzed more than 30 hair samples preserved in Buddhist temples, museums and private collections. Result: horsehair, bison, human, raccoon, cow, wolf, coyote… but none of the Yeti .

    The good news for zoology is that two hair samples match the DNA of a polar bear fossil, which could belong to a bear species unknown until now or a variety of polar bear of another color (golden-brown).

    PAtterson-gimlin film, bigfoot
    The most famous photo of Bigfoot is a snapshot of a video taken by Patterson-Gimlin

    THE CHUPACABRAS

    The Chupacabras (“goat-sucker”) is supposed to be a creature that kills and sucks the blood of farm animals without spilling a drop. Definitions are multifarious, bright red eyes, scales, bipedal, spikes on the back… also alleged dead Chupacabras are reported:

    mexico chupacabras
    The alleged chupacabras carcasses are usually canines with scabies who have lost hair, raccoons, or in this case a flying fox. Photo: unknown

    The Chupacabras has the distinction of operating in latin countries: Venezuela, Puerto Rico, Mexico, Argentina, Spain, Chile… The alleged habitat of chupacabras clashes with biogeography: a branch of science that studies the distribution of living beings on our planet .

    Knowing a basics of biological evolution and climate we can think like biogeographers: species are distributed according to their habitat and have adapted to the different areas and climates. No one would think of a frog living in the Sahara desert, for example. But Chupacabras seems to not care: inhabits a huge variety of landscapes between two continents and several islands, but of course, has a predilection for Spanish-speaking places. Nothing to do with biology: it is the product of a legend of oral tradition.

    ZOOLOGY VS CRYPTOZOOLOGY

    In conclusion, zoology is the branch of biology that to certify that it has discovered a new species must:

Homosexuality is so animal

Fortunately for LGTB collective, greater and greater countries and societies understood that homosexuality is something natural and that it is not an illness. Anyway, despite this is true, it is also true that it is necessary to work hard to achieve equality on lesbian, gay, transexual and bisexual rights and to eradicate the false belief that homosexuality is unnatural. In the next weeks, in cities all over the world like Barcelona and Madrid will take place LGTB Pride parties. For this reason, this article hope to show clear examples that homosexuality is not exclusive of human, but present in many animals. So, there is no reason to continue believing in the argument that homosexuality is unnatural! 

IF YOU ARE NEW HERE, YOU CAN FOLLOW US ON FACEBOOK AND TWITTER

INTRODUCTION

Homosexuality is a fact present in many animal species. In fact, it has been documented in 1,500 of the more than 1 million described animal species (Bagemihl, 1999). Without going any further, a study of the California University demonstrated that in all the analysed species there were some individuals with homosexual traits or behaviours, including worms, flies, birds, dolphins and chimpanzees, among others.

In the animal kingdom, the concept “homosexuality” refers to any sexual behaviour between same sex animals, like copulation, flirt, mating, genital stimulation and young breeding. In the case of humans, it is more complex than this because there is much more factors and feelings are involved in this.

From the biological point of view, it is supposed that the goal of any species is its perpetuation. So, which is the function of homosexuality? There are many theories about it and they are not particular because for each species there is one explanation or another. Let’s explain three of them! Marelen Zuk, professor in biology at the University of California, propose that not producing their own offspring, homosexuals could help to breed and take care of their relatives, what also contributes to genetic pool. According to the biologist and phsycologist Janet Mann from the Georgetown University, it is a way of creating links and alliances between individuals. Finally, in the case of fruit fly and other insects, the evolutionary biologist Nathan Bailey suggest that the reason of their homosexuality is the lack of the gene that let them to distinguish between both sex. There is also the possibility that homosexuality doesn’t have any function. At any rate, homosexual behaviour may have evolutionary consequences, but it is still being studied.

PINGUINS

On February 2004, New York Times published that Roy and Silo, two male chinstrap penguins (Pygoscelis antarctica) from the Central Park Zoo, coiled their necks, vocalized one to other and had sex. When they were exposed to females, they rejected them. Moreover, zookeepers gave them a fertile egg in order they incubate them and when the little penguin was born they feed her until she was able to live by herself. This is not an isolated case because it have happened more in this and other zoos, like in Bremerhaven Zoo (Germany), Faunia (Spain) and Dingle Ocean World (Ireland).

But this is not exclusive of captive animals. A research done on Adélie penguin (Pygoscelis adeliae) found homosexual behaviours in some of their young individuals. Another research was carried on king penguin (Aptenodytes patagonicus), in which it was observed that 28.3% of males flirted with other males. The reason in this case seems to be an excess of males or high testosterone levels. Anyway, it was found two partners (male-male and female-female) in which one knew the vocalization of the other.

Los pingüinos son un claro ejemplo de aves con comportamientos homosexuales (Foto de Listverse).
Penguins are a good example of birds with homosexual behaviours (Picture from Listverse).

BONOBOS

The bonobo (Pan paniscus), apes very close to humans, are a good example of homosexual behaviours. They are so sexual. It has been observed that, in captivity or free, half of their sexual relationships are with same sex animals. In addition, females have sex with other females almost every hour. The main function of this is to strengthen links between animals. In the case of males, in order to reduce the stress after a fight, a penis fight takes place, that consists on rubbing their genitals together.

En los bonobos, las relaciones con seres del mismo sexo podrían servir para hacer los vínculos más fuertes (Foto de BBC).
In bonobos, same sex relationships may be done to strengthen social links (Picture from BBC).

KILLER WHALES

Homosexual interactions between male killer whales (Orcinus orca) are an important part of their social life. When resident groups join together during summer and autumn to feed, males show flirting, affectionate and sexual behaviours between them. Normally, interactions take place one to one and lasts for an hour, but it can be longer. In this interactions, they caress, chase and carefully push one to the other. Another amazing behaviour is the beak – genital orientation, but it also take place between males and females. Just under the water surface, one male swims in an upside down position, touching the genital zone of the beak. Then, they dive together in a double helix spiral. This happens several times, but they interchange their positions. It is not strange to see them with the erected penis during this interaction. Despite it happens in all ages, it is specially abundant in young animals.

Las orcas (Orcinus orca) son cetáceos con comportamientos homosexuales habituales (Foto de WorldPolicy)
Killer whales (Orcinus orca) are cetaceans with homosexual behaviours (Picture from WorldPolicy)

GUPPIES

A research made on guppies (Poecilia reticulata) demonstrated that the lack of females in the environment during a long period of time produce that males prefer other males even when there are females in the environment. Not only this. When males that had been with females during a long period of time are deprived from females for a short time (two weeks) they prefer males instead of females.

Los machos de guppy preferían otros machos cuando no había hembras en su ambiente durante largos períodos de tiempo (Foto de GuppyFish).
Male guppies prefer other males when there is no females in the environment during a long period of time (Picture from GuppyFish).

DRAGONFLIES

Some studies lay bare that there is a high rate of mating between same sex individuals in dragonflies. The reasons could be the lack of individuals of the other sex or that female tricks to avoid sexual advances of males could produce that males look for same sex individuals. One specific example is blue-tailed damselfly (Ischnura elegans), in which 17% of males of wild populations prefer male partners.

Los machos del cola azul (Ischnura elegans) prefieren a otros machos cuando son alojados en ausencia de hembras (Foto: L. B. Tettenborn, Creative Commons).
17% of male blue-tailed damselfly (Ischnura elegans) prefer other males (Picture: L. B. Tettenborn, Creative Commons).

SOME EXAMPLES MORE

  • Studies on wild occidental gull (Larus occidentalis) show that between 10 and 15% of females are homosexual. It has been seen that they show flirting rituals between them and that they set nets together. They only copulate with males to produce fertile eggs, but then go with their initial partner.
  • On domestic sheep, 8% of males from a flock prefer other males despite the presence of females. But this could benefit other males because they can present the same genes and pass to next generation. But this also benefits females by doing them more fertile.
  • The king of savannah, the lion, also have homosexual behaviours. It has been observed wild male and female lions with this behaviour, include mating.

  • In some species of seahorse, homosexual behaviours between females are frequent, more than heterosexual.

CONCLUSION

Homosexual behaviours are no only in humans, but they are more complex in people. The reason that lead to the development of these behaviours in animals are several: lack of females, to stablish harder links… but there are some examples in which the behaviour is permanent. Moreover, it has been seen that this behaviours are not artificial due to the captivity of animals, like humans in prison, but they haven in wild animals too. So, homosexuality happens in many animals and cannot be considered unnatural. In addition, if it is the result of natural forces it cannot be considered immoral. 

gay-friendly

REFERENCES

Difusió-anglès

Amphioxus: animals which wanted to be vertebrates

Amphioxus is the goal of this article, animals that are included in the Cephalochordata group, inside the Chordata phyllum. Cephalochordata is a group of marine animals placed between invertebrates and vertebrates. Here, we are going to explain the importance of this animals in Zoology and its biology. 

INTRODUCTION

Amphioxus, placed in the Cephalochordata subphyllum, is a marine animal in the Chordata group. Chordata includes, in addition to this group, Urochordata (among which there is Pyrosomida), hagfishes and vertebrates (fishes, amphibians, reptiles, birds and mammals). Despite they represent just a 4% of the amount of organisms in the planet (that correspond to 55,000 species), Chordata has had a very important evolutionary success.

The importance in Zoology of amphioxus is that present all the features of Chordata visible, so other chordata has lost them later or has modified them. These are the features:

  • Notochord: dorsal bar placed under the nervous system with a skeletal function.
  • Epineuria: dorsal position of nerve cord.
  • Endostyle: ventral groove in the pharynx that produce mucus to catch food and also produce iodized compounds. This gives thyroid.
  • Caudal fin: locomotive appendix.
Basic features of Chordata in a Cephalochordata (Picture obteined from here).
Basic features of Chordata in a Cephalochordata (Picture obteined from here).

CEPHALOCHORDATA: AMPHIOXUS

Cephalochordata, known as amphioxus, is a group of 25 species of marine animals with a thin body, laterally compressed and transparent, that measures between 5 and 7 cm.

Brachiostoma lanceolatum (Foto: Hans Hillewaert, Creative Commons)
Brachiostoma lanceolatum (Picture: Hans Hillewaert, Creative Commons)

GENERAL ANATOMY

The skin of cephalochordata consists on one layer of prismatic cells with mucus glands that produce mucus, followed by the basal connective lamina and the dermis.

The most characteristic is notochord, which is composed by cells surrounded by a conjunctive case of actin and paramyosin. These cells have neurons that come from the nerve cord, allowing their contraction in diameter.

General anatomy of a cephalochordate. 1. brain-like blister 2. notochord 3. dorsal nerve cord 4. post-anal tail 5. anus 6. food canal 7. blood system 8. abdominal porus 9. overpharynx lacuna 10. gill's slit 11. pharynx 12. mouth lacuna 13. mimosa 14. mouth gap 15. gonads (ovary/testicle) 16. light sensor 17. nerves 18. abdominal ply 19. hepatic caecum 20. swim bladder 21. lateral line (Imatge: Piotr Michał Jaworski, Creative Commons)
General anatomy of a cephalochordate. 1. brain-like blister 2. notochord 3. dorsal nerve cord 4. post-anal tail 5. anus 6. food canal 7. blood system 8. abdominal porus 9. overpharynx lacuna 10. gill’s slit 11. pharynx 12. mouth lacuna 13. mimosa 14. mouth gap 15. gonads (ovary/testicle) 16. light sensor 17. nerves 18. abdominal ply 19. hepatic caecum 20. swim bladder 21. lateral line (Imatge: Piotr Michał Jaworski, Creative Commons)

They are swimming animals, with several fins: they have a dorsal fin, with vesicles placed one after another; a caudal fin and an anal fin, that extends from caudal fin till atriopore, opening from where water leaves the body. This anal fin bifurcates in two sheets and give place two folds to slightly stabilize them, which are known as metapleural folds.

They have a series of muscular fascicles called myomeres, which are in a shape of V with the apex in a forward position.

Oral region has an oral hood cirri to distinguish the entering particles, the Wheel organ (produce water movements) and a diaphragm to regulate the water entrance into the body. Pharynx is perforated for 80 fissures wit the endostyle in the basis, that produce mucus and it is pick into a dorsal lamina, where there are a small bars and then goes to oesophagus.

FUNCTIONS

In order to feed, water with particles gets in through the mouth, it is propelled by the oral hood cirri and then cross the gill’s fissures, where food gets stuck thanks to mucus produced by endostyle, and finally goes to intestines. Here, food particles go to an hepatic cecum and phagocytosis process takes place. Then, water goes to the inner cavity of the body (called atrium) and leaves the body through a pore (atriopore). Digestive system is composed by the oral system, the pharynx with endostyle, the oesophagus and a digestive tube without muscles; which is composed at the same time by the intestine, the hepatic cecum (produce enzymes and absorb nutrients) and the anus, placed in the left side of the body. Its movement is due to a cilium ring.

Circulatory system doesn’t have heart and consists on two circuits: the ventral circuit goes from caudal fin to head and the dorsal, the other way around. The circulatory liquid goes to pharynx fissures to become oxygenated and has amebocytes, but it has not respiratory pigments, so breathing takes places by diffusion.

Excretory system is formed by solenocytes, cells that filter the blood from arteries, placed in the nefritic crest, that connects the atrium with a channel, so that allows that excretory products are expelled with the water in the atrium.

Nervous system consists on a simple nerve cord with a vesicle in the anterior part. This cord, in each metamere, emits two dorsal mixed nerves (with sensitive and motor nerves), which are branched off in two branches: a sensitive dorsal branch and a mixed ventral branch. This ventral branch goes to viscera, tegument and muscles. Sensitive system is constituted by a pigment spot (sensitive to light) and chemoreceptors.

About reproduction, each animal has just one sex (dioic animals), but its anatomy is very similar. They present between 25 and 38 gonads and to do the lay, the body wall is broken.

HABITAT

Amphioxus lives buried in sand seafloor of the shallow and coastal waters and in estuaries all over the world.

branchistoma lanceolatum
Common amphioxus (Branchiostoma lanceolatum) (Picture from UniProt)

REFERENCES

  • Notes of the Chordata subject of the Degree in Biology of the University of Barcelona
  • Brusca & Brusca (2005). Invertebrates. Ed. Mc Graw Hill (2 ed)
  • Hickman, Roberts, Larson, l’Anson & Eisenhour (2006). Integrated principles of Zoology. Ed. Mc Graw Hill (13 ed)
  • Cover picture: Ricardo R. Fernandez

If you enjoyed this article, please share it on social networks to spread it. The aim of the blog, after all, is to spread science and reach as many people as possible. Your comments are welcome. 

This publication is under a Creative Commons License:

Llicència Creative Commons

The secret life of bees

If we talk about bees, the first thing that comes to mind might be the picture of a well-structured colony of insects flying around a honeycomb made of perfectly constructed wax cells full of honey.

But the truth is that not all bees known nowadays live in hierarchical communities and make honey. Actually, most species of bees develop into a solitary life-form unlike the classical and well-known honey bees (which are so appreciated in beekeeping).

Through this article, I’ll try to sum up the different life-forms of bees in order to shed light on this issue.

INTRODUCTION

Bees are a large diverse group of insects in Hymenoptera order, which also includes wasps and ants. To date, there are up to 20,000 species of bees known worldwide, although there could be more unidentified species. They can be found in most habitats with flowering plants located in every continent of the world (except for the Antarctica).

Bees pick up pollen and nectar from flowers to feed themselves and their larvae. Thanks to this, they contribute on boosting the pollination of plants. Thus, these insects have an enormous ecological interest because they contribute to maintain and even to enhance flowering plant biodiversity on their habitats.

Specimen of Apis mellifera or honey bee (Picture by Leo Oses on Flickr)

However, even though the way they feed and the sources of food they share could be similar, there exist different life-forms among bees which are interesting to focus on.

BEE LIFE-FORMS

SOLITARY BEES (ALSO KNOWN AS “WILD BEES”)

Most species of bees worldwide, contrary to the common knowledge, develop into a solitary life-form: they born and grow alone, they mate once when groups of male and female bees meet each other and, finally, they die alone too. Some solitary bees live in groups, but they never cooperate with each other.

Female of solitary life-form bees build a nest without the help of other bees. Normally, this kind of nest is composed by one or more cells, which are usually separated by partition walls made of different materials (clay, chewed vegetal material, cut leaves…). Then, they provide these cells with pollen and nectar (the perfect food for larvae) and, finally, they lay their eggs inside each cell (normally one per cell). Contrary to hives, these nests are often difficult to find and to identify with naked eyes because of its discreetness.

The place where solitary bees build their nest is highly variable: underground, inside twisted leaves, inside empty snail shells or even inside pre-established cavities made by human or left behind by other animals.

These bees don’t make hives nor honey, so these are probably the main reasons because of what they are less popular than honey bees (Apis mellifera). Although solitary bees are the major contributors on pollination due to their abundance and diversity (some of them are even exclusive pollinators of a unique plant species, which reveals a close relation between both organisms), most of the studies related with bees are focused on honey bees, because of what studies and protection of these solitary life-forms still remain in the background.

There exists a large diversity of solitary bees with different morphology:

3799308298_ff9fbb1bcc_n7869021238_a811f13aa4_n1) Specimen of Andrena sp. (Picture by kliton hysa on Flickr). 
2) Specimen of Xylocopa violacea or violet carpenter bee (Picture by Nora Caracci fotomie2009 on Flickr).
3) Specimen of Anthidium sp. (Picture by Rosa Gambóias on Flickr).

There are also parasite life-forms among solitary bees, that is, organisms that benefit at the expense of another organism, the host; as a result, the host is damaged in some way. Parasitic bees take advantage of other insects’ resources and even resources from other bees causing them some kind of damage. This is the case of Nomada sp. genus, whose species lay their eggs inside other bee nests (that is, their hosts), so when they hatch, parasite larvae will eat the host’s resources (usually pollen and nectar) leaving them without food. Scientists named this kind of parasitism as cleptoparasitism (literally, parasitism by theft) because parasitic larvae steal food resources from the host larvae.

PSEUDOSOCIAL BEES

From now on, we are going to stop talking about solitary bees and begin to introduce the pseudosocial life-forms, that is, bees that live in relatively organized and hierarchical groups which are less complex than truly social life-forms, also known as eusocial life-forms (which is the case of Apis mellifera).

Probably, the most famous example is the bumblebee (Bombus sp.). These bees live in colonies in which the queen or queens (also known as fertilized females) are the ones who survive through the winter. Thus, the rest of the colony dies due to cold. So is thanks to the queen (or queens) that the colony can arise again the next spring.

5979114946_9d491afd84_nSpecimen of Bombus terrestris or buff-tailed bumblebee(Picture by Le pot-ager "Je suis Charlie" on Flickr).

EUSOCIAL BEES

Finally, the most evolved bees known nowadays in terms of social structure complexity are eusocial bees or truly social bees. Scientist have identified only one case of eusocial bee: the honey bee or Apis mellifera.

Since the objective of this article was to refute the “all bees live in colonies, build hives and make honey” myth, I will not explain further than the fact these organisms form complex and hierarchical societies (this constitutes a strange phenomenon which has also been observed in thermites and ants) normally led by a single queen, build large hives formed of honeycombs made of wax, and make honey, a very energetic substance highly appreciated by humans.

Specimens of Apis mellifera on a honeycomb full of honey (Picture by Nicolas Vereecken on Flickr).

As we have been seeing, solitary bees play an important role in terms of pollination, because of what they must be more protected than they currently are. However, honeybees, and not solitary bees, still remain being on the spotlight of most scientists and a great part of society because of the direct resources they provide to humans.

REFERENCES

  • Notes taken during my college practices at CREAF (Centre de Recerca Ecològica i d’Aplicacions Forestals – Ecological Research and Forest Applications Centre). Environmental Biology degree, UAB (Universitat Autònoma de Barcelona).
  • O’toole, C. & Raw A. (1999) Bees of the world. Ed Blandford
  • Pfiffner L., Müller A. (2014) Wild bees and pollination. Research Institute of Organic Agriculture FiBL (Switzerland).
  • Solitary Bees (Hymenoptera). Royal Entomological Society: http://www.royensoc.co.uk/insect_info/what/solitary_bees.htm
  • Stevens, A. (2010) Predation, Herbivory, and Parasitism. Nature Education Knowledge 3(10):36

If you liked this article, feel free to share it at different Social Networks. Your collaboration allows science and nature information to spread throught different media and guarantee more peolpe could enjoy it!

Llicència Creative Commons

Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.