Arxiu de la categoria: CONTENIDOS

Los priones: unas proteínas especiales

¿Recordáis el caso de las vacas locas? Hace unos años causó mucho alboroto ya que la enfermedad que afectaba a estos animales se transmitía a las personas. Más tarde se descubrió que la causa fueron los llamados priones. A continuación os explico qué son y las enfermedades que ocasiona. 

¿QUÉ SON LOS PRIONES?

Los priones son proteínas, pero con características diferentes. Las proteínas son moléculas formadas por aminoácidos, que se unen por enlaces peptídicos. Todas las proteínas están compuestas por carbono, hidrógeno, oxígeno y nitrógeno. Se encuentran prácticamente presentes en todas las células del cuerpo y participan en todos los procesos biológicos que se producen. Mientras que el ADN transporta la información genética de la célula, las proteínas ejecutan las tareas dirigidas por esta información.

De todas las macromoléculas, las proteínas son las más variadas. A cada célula hay miles de proteínas diferentes, con una amplia gama de funciones. Entre ellas, la de ser componentes estructurales de células y tejidos, actuar en el transporte y almacenamiento de pequeñas moléculas, transmitir la información entre células y proporcionar una defensa delante de una infección. No obstante, la función fundamental de las proteínas es actuar como enzimas, que catalizan casi todas las reacciones químicas en los sistemas biológicos.

Los priones, pues, son proteínas con características patógenas e infecciosas (Vídeo 1). No son virus ni organismos vivos, sino proteínas sin ácido nucleico, es decir, sin ADN. Se encuentran principalmente en la superfície de células del sistema nervioso central, sobre todo en neuronas; aunque también están situadas en otros tejidos corporales de animales adultos. Se han detectado niveles significativos en el corazón y músculo esquelético, y en menor medida en otros órganos, excepto el hígado y el páncreas.

Vídeo 1. ¿Qué son los priones? (Fuente: YouTube)

LA PROTEÍNA PRIÓNICA CELULAR

En las enfermedades causadas por los priones se produce un cambio de configuración en la proteína priónica celular PrPc (Figura 1). Esta proteína ejerce un papel protector para las células y las ayuda a responder frente a la deficiencia de oxígeno. La consecuencia de los priones sobre esta proteína es la alteración de su funcionalidad, dando lugar a la proteína de configuración alterada PrPSc. No obstante, las dos configuraciones de esta proteína tienen la misma secuencia de aminoácidos. Su secreto es que, aunque sean proteínas, están mal dobladas, es decir, su conformación es errónea.

prpc prpsc
Figura 1. A la izquierda la proteína normal PrPc y a la derecha la proteína PrPSc con la configuración alterada (Fuente: Searching for the Mind with Jon Lieff, M. D.)

ENFERMEDADES PRIÓNICAS

Las enfermedades priónicas son procesos neurodegenerativos, producidos por el metabolismo aberrante de una proteína priónica. Éstas afectan a seres humanos y animales y tienen una evolución clínica fatal, con la muerte como final.

Aunque existen varias enfermedades priónicas, los síntomas y manifestaciones clínicas son compartidos (Tabla 1). Entre las manifestaciones clínicas destacan la demencia, ataxia (descoordinación en el movimiento de las partes del cuerpo), insomnio, paraplegías y conductas anormales. El cerebro adquiere un aspecto espongiforme, es decir, un aspecto de esponja. Esto es debido a la acumulación de las proteínas priónicas a las neuronas, donde se forman las placas amiloides.

Las placas amiloides son causadas por la acumulación del péptido amiloide, una proteína esencial para el funcionamiento celular en todo el cuerpo. Se cree que esta acumulación en el cerebro genera toxicidad para las células nerviosas.

Hasta el momento no hay ningún tratamiento que cure, mejore o controle los síntomas y signos de estas afecciones.

Tabla 1. Enfermedades priónicas y sus manifestaciones clínicas (Fuente: Rubio, T. & Verdecia, M. Enfermedades priónicas. MEDISAN 2009; 13(1))

ENFERMEDAD SÍNTOMAS EDAD DURACIÓN
Creutzfeldt-Jacob

Demencia

Ataxia

< 60 años

1 mes – 10 años

(media 1 año)

Kuru

Ataxia

Demencia

40 años (29-60) 3 meses – 1 año
Insomnio familiar fatal Insomnio

No autonomía

Ataxia

Demencia

45 años (35-55) 1 año

ENFERMEDAD DE CREUTZFELDT-JACOB

Durante el siglo XVIII, los ganaderos europeos describieron una enfermedad neurodegenerativa que afectaba a ovejas y cabras, llamada scrapie (temblor). Los animales afectados se frotaban de manera compulsiva contra rocas, árboles o vallas, provocando que se les cayera la lana. Además, el cerebro de estos animales tenía aspecto de esponja, donde se derivó el término espongiforme.

Pero no fue hasta principios del siglo XX, en 1920, que los neurólogos Creutzfeldt y Jakob describieron los primeros casos de encefalopatía espongiforme en humanos (Figura 2). De aquí el nombre que se le puso a la enfermedad.

creutzfeldt-jakob-disease-cjd.jpg
Figura 2. Comparación de dos cerebros: el de la izquierda pertenece a una persona afectada por la enfermedad Creutzfeldt-Jacob y el otro, a una persona sana (Fuente: Health & Medical Information)

Se produce una pérdida de memoria, falta de coordinación y deterioro de las habilidades mentales. Los problemas de equilibrio son comunes y a menudo se producen desde el principio. Muchos pacientes pierden autonomía y son incapaces de cuidarse de ellos en estadios posteriores de la enfermedad.

A causa de la naturaleza priónica de la enfermedad, cualquier síntoma es posible y depende del área del cerebro que está siendo afectada.

KURU

El kuru es una enfermedad muy rara, que se encuentra entre personas de Nueva Guinea. El principal factor de riesgo para contraer esta enfermedad es el consumo de tejido cerebral humano, el cual puede contener partículas infecciosas.

Es por este motivo que se asocia a personas que practican una forma de canibalismo, en que se comen los cerebros de personas muertas como parte de un ritual funerario. Aunque esta práctica cesó en 1960, se han reportado casos de kuru años más tarde.

INSOMNIO FAMILIAR FATAL

Es una enfermedad familiar y hereditaria, en que los afectados padecen insomnio progresivo. El cerebro humano necesita dormir y descansar, y el insomnio permanente (que no se puede tratar con fármacos) acaba provocando la muerte de los pacientes.

El insomnio se produce debido a una alteración permanente e irreversible del ciclo vigília-sueño, que se caracteriza por la incapacidad del paciente para desarrollar un patrón del sueño REM y No REM.

REFERENCIAS

  • Alberts, B. et al. (2016). Biología molecular de la célula. Barcelona: Omega.
  • Rubio, T. & Verdecia, M. Enfermedades priónicas. MEDISAN 2009; 13(1)
  • Wemheuer, W. M. et al. Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types. Am J Pathol. 2009; 175(6): 2566–2573
  • Manual MSD
  • Early Clinical Trial
  • MedlinePlus
  • Foto portada: Canal44

MireiaRamos-castella

Anuncis

Cetáceos y pesca: una relación peligrosa

Los cetáceos son criaturas que viven en los mares y océanos de la Tierra. Como otros animales, no sólo deben de hacer frente a las amenazas naturales de su entorno, como la depredación o las enfermedades, sino que también interaccionan con las actividades humanas, como la pesca. Aquí veremos como la pesca amenaza a las poblaciones de estos mamíferos marinos.

CETÁCEOS Y PESCA: UNA RELACIÓN PELIGROSA

Según un informe publicado recientemente por Ecologistas en acción, las principales amenazas de origen antrópico que los cetáceos tienen que sortear son la pesca, la acuicultura, el ruido submarino, las colisiones con embarcaciones, la basura marina, la contaminación química, el turismo de avistamiento, la investigación, el cambio climático y los delfinarios.

amenazas cetaceos
Los cetáceos se ven afectados por multitud de factores humanos y pueden acabar varados en la costa (Foto: Bahnfrend, Creative Commons)

LA INDUSTRIA BALLENERA

Durante el siglo pasado, la actividad ballenera capturó más de tres millones de individuos en todo el mundo, especialmente en el hemisferio sur, donde se capturaron, según el IWC, unos 750.000 individuos de rorcual (Balaenoptera physalus) y 400.000 ejemplares de cachalote (Physeter macrocephalus), entre otros.

Se sabe que hasta la década de 1960, fueron capturadas centenares de miles de ballenas azules, el mayor animal que habita en la Tierra. A pesar de los esfuerzos de conservación, actualmente sólo sobreviven entre 10.000 y 20.000 individuos, una pequeña parte respecto a las que habitaban la Tierra antes del auge de la industria ballenera.

industria ballenera, relacion cetáceos pesca
Gravado que ilustra la caza de ballenas (Foto: Creative Commons)

De hecho, según un estudio de Tulloch y colaboradores (2017), a pesar de que actualmente hay una moratoria internacional y se realizan esfuerzos de conservación importantes, en el año 2100 las poblaciones de cetáceos que fueron objeto de capturas llegarán como mucho a la mitad de su tamaño original.

Contrario a las prohibiciones establecidas en 1986, hay países que siguen con la captura de ballenas y delfines. Estos países son principalmente Japón, Noruega e Islandia. Se cree que capturan unas 1.500 ballenas anuales conjuntamente, a pesar de que la demanda de carne de estos mamíferos marinos es escasa.  De hecho, desde la prohibición, se calcula que se han capturado unas 30.000 ballenas.

En España también está prohibida la captura de cetáceos, aunque se cree que hay una pequeña actividad ilegal.

LAS CAPTURAS ACCIDENTALES

Debemos de tener presente el impacto de las capturas accidentales (bycatch en inglés), una de las causas principales de mortalidad en cetáceos. Consiste en la captura de especies que no son el objetivo de pesca.

Las capturas accidentales pueden causar un problema de conservación cuando hay especies en peligro afectadas, como es el caso de la vaquita marina (Phocoena sinus), una marsopa críticamente amenazada (sólo quedan unos 30 animales en todo el mundo), según la IUCN, debido principalmente a las redes de enmalle.

Las capturas accidentales son una de las principales causas de mortalidad, aunque a nivel europeo se han tomado algunas medidas, como el Reglamento 812/2004. Era especialmente importante la captura accidental con el uso de redes de deriva, pero actualmente esta práctica está prohibida en todo el Mediterráneo. De todas formas, otros artes de pesca como el enmalle, el cerco o el arrastre son particularmente dañinos.

A partir de la década de los años 60 del siglo pasado, la pesquería de cerco del atún en el Pacífico Este tuvo un impacto notable en las poblaciones de delfines. El motivo es que los pescadores sabían que bajo los grupos de delfines que nadaban en superficie había bancos de atunes que los seguían para tomar direccionabilidad. Así pues, conociendo esta relación, rodeaban a los cetáceos (y por lo tanto a los atunes) con las redes de cerco, matando luego a los primeros. Se estima que sólo en 1986 se capturaron unos 133.000 delfines. Para detener esta situación, la presión de la sociedad fue fundamental para que se tomaran las medidas oportunas. De hecho, actualmente menos del 0,1% de los individuos son capturados.

relacion pesca cetáceos, pesca accidental delfines
Los pescadores asociaban delfines con atunes, de manera que la pesca de cerco les afectó gravemente (Foto: Wally Gobetz, Creative Commons)

Ahora nos centraremos en un caso de redes de enmalle. Las redes de enmalle matan a muchas especies distintas de cetáceos, tanto de delfines como de ballenas. Aunque las ballenas suelen sobrevivir, a menudo se les quedan restos de los aparatos de pesca unidos al cuerpo, como redes. Los cetáceos pequeños no corren la misma suerte y, a menudo, mueren. Ya hemos visto el caso de la vaquita marina, pero otra marsopa, la marsopa común (Phocoena phocoena), es el cetáceo al que más muertes le ocasionan las redes de enmalle.

Finalmente veremos la relación entre cetáceos y pesca de arrastre. Muchas especies de cetáceos, tanto de delfines como de ballenas pequeñas, se alimentan de las especies objetivo de pesca de la pesca de arrastre, de manera que son capturados mientras estos se alimentan de sus presas. De hecho, se han reportado 16 especies de cetáceo en todo el mundo que se alimentan en asociación con la pesca de arrastre. Las capturas son mucho mayores cuando las redes se dejan a media profundidad que cuando la pesca se realiza en el fondo marino.

A pesar de todos los esfuerzos de conservación, según una estimación realizada por Read y colaboradores, en todo el mundo se capturan accidentalmente unos 300.000 mamíferos marinos al año debido a las operaciones pesqueras.

COMPETENCIA POR EL ALIMENTO

Finalmente, no podemos olvidar que cetáceos y pescadores compiten por los mismos recursos. Por lo tanto, debemos de tener en cuenta que algunos cetáceos también interaccionan con la pesca para conseguir comida. Los cachalotes, los delfines mulares y las orcas han aprendido a “robarle” la comida a los pescadores.

De hecho, toman las capturas de las líneas de palangre, de las redes de enmalle y de las redes de arrastre, corriendo el peligro de quedar atrapados.

De todas formas, se han tomado algunas medidas, como por ejemplo instalar unos dispositivos que emiten unos sonidos molestos para los animales. A pesar de los intentos, se han acabado adaptando y, de hecho, en algunos casos los interpretan como un indicativo de la presencia de pescadores en la zona.

REFERENCIAS

  • López López, L (2017). Cetáceos: los mamíferos más salaos. Informe sobre las interacciones entre cetáceos y actividades humanas. Ecologistas en acción.
  • Hall, MA; Alverson, DL & Metuzals, KI (2000). Bycatch: Problems and solutions. Marine Pollution Bulletin Vol. 41, N 1-6, pp. 204-219.
  • Northridge, S (2009). Bycatch. En Perrin, WF; Würsig, B & Thewissen, JGM (Eds). Encyclopedia of Marine Mammals (pp.167-169). Academic Press (2 ed).
  • Whale and Dolphin Conservation: Stop Whaling
  • World Wildlife Foundation: The Vaquita
  • Foto de portada: Omar Vidal (fuente)

¿Es una cigüeña? ¿Es un águila? Es… ¡el secretario!

Alto y elegante, a primera vista el secretario nos recuerda a una cigüeña o grulla: plumaje blanco y negro, patas largas… pero el pico y garras le delatan. Más allá de que todos son aves, poco tienen que ver. ¡Descubre esta particular ave rapaz!

AVES RAPACES

Picos curvados y poderosos, garras curvadas, alimentación carnívora… todos sabríamos reconocer un águila, un buitre, un halcón o una lechuza al tenerlos delante. Las aves rapaces, de presa o de rapiña están especializadas en cazar animales vivos, excepto los buitres (que son carroñeros) y el buitre de los palmares (Gypohierax angolensis) que se alimenta, entre otras cosas, de la pulpa de los frutos de las palmeras oleífera y de la rafia. En ocasiones también roban las presas a otras rapaces, de ahí su nombre. Una vez han matado la presa, procuran evitar las partes indigeribles, pero es inevitable que ingieran piel, pelos, uñas, dientes, huesos… todos estos elementos de difícil digestión serán regurgitados por el pico al cabo de unas horas en forma de bolo, llamado egagrópila (del griego antiguo αἴγαγρος –aígagros-, “cabra silvestre”, y pila, “pelota” o del latín pilus, pelo).

egagropila
Egagrópilas de diferentes rapaces nocturnas y su contenido. Fuente

REPRODUCCIÓN

Según la especie, las rapaces construyen el nido sobre el suelo, árboles o rocas, exceptuando las falcónidas y las nocturnas que no construyen nido (utilizan los de otras especies o ponen los huevos en  huecos en los árboles o rocas). Como norma general, las más grandes son maduras sexualmente al cabo de varios años y ponen un solo huevo, mientras que las pequeñas son maduras sexualmente al cabo de un año y ponen más de un huevo. Las hembras de las rapaces cazadoras suelen ser de mayor tamaño que el macho y a diferencia de las nocturnas, en las diurnas el macho también participa en la incubación.

SENTIDOS

“Tener vista de águila” es un dicho que nos da pistas sobre el excepcional sentido de la vista que poseen las rapaces diurnas. Se estima que ven hasta 8 veces con más detalle que un humano y en color, con el que detectan presas o carroña a grandes distancias. Por contra, el sentido más desarrollado de las nocturnas es el oído, con una agudeza auditiva 50 veces superior a la nuestra y visión en blanco y negro. Como en el resto de las aves, el olfato no es muy bueno, exceptuando el buitre aura (Cathartes aura) que lo tiene muy desarrollado.

EL SECRETARIO: UNA RAPAZ DIFERENTE

El secretario (Sagittarius serpentarius) es una accipítrida, del mismo orden (Accipitriformes) que las águilas pescadoras, buitres del Nuevo Mundo, milanos, gavilanes, azores, halcones, ratoneros, águilas, aguiluchos y elanios. Es el único representante de la familia Sagittariidae. En vuelo o a distancia parece más una grulla que un ave rapaz. Tiene unas patas largas y desnudas y dedos más cortos y no tan curvados.

Secretario en el Parque Nacional del Serengeti. Foto: Yoky

Tiene una cresta de plumas negras, las plumas de vuelo también son negras y el resto del cuerpo es gris y blanquecino, tanto en machos como en hembras. En el centro de la cola presenta dos plumas más largas. En los machos las plumas de la cresta son ligeramente más largas. Su cara desplumada, anaranjada y largas pestañas llaman poderosamente la atención (en los jóvenes el color es más amarillento que naranja-rojizo). Puede pesar hasta 4,5 kg, medir 1,5 m de altura (es la rapaz más alta y larga) y 2,2 m de envergadura.

Detalle de la cabeza del secretario. Foto: desconocido.

El origen de su nombre no está claro: se creía que le venía por la corona de 20 plumas que recuerdan a las plumas que llevaban las secretarias británicas del s XIX prendidas de su pelo y usaban para escribir, o a los escribas de la Edad Media, que las llevaban detrás de la oreja. Lo más probable es que su nombre derive de una mala traducción francesa de su nombre árabe: saqr-et-tair (ave cazadora).

ALIMENTACIÓN

Su nombre científico nos da pistas sobre su alimentación: Sagittarius serpentarius,  del latín sagittarius, arquero (por su forma de moverse o por las plumas de su cabeza que recuerdan a flechas) y del latín serpens, entis, de serpiente. En efecto, aunque su dieta incluye insectos grandes, pequeños mamíferos, ranas, lagartijas y tortugas, también depreda serpientes, incluyendo cobras y víboras.

Secretario engullendo una serpiente entera. Fuente

Aunque puede volar, prefiere desplazarse caminando y corriendo. A diferencia de la mayoría de rapaces, no busca sus presas desde el aire. Los adultos suelen cazar por parejas y son capaces de caminar hasta 25-30 kms al día por la sabana africana en busca de sus presas y correr tras animales más rápidos que ellos. Una vez detectada una serpiente, el secretario patea el pasto para hacerla salir y la persigue hasta atraparla. Como todas las rapaces, no la ataca con el pico, sino con las garras: primero la mata o aturde con fuertes patadas, con una fuerza equivalente de hasta 5 veces su peso en una décima de segundo, y luego la engulle entera (referencia). Además, a diferencia de otras aves, mantiene sus ojos abiertos durante el ataque, lo que permite golpear con precisión la cabeza y nuca de su presa. ¿Recuerdas al casuario, otra ave capaz de dar patadas mortales?

No te pierdas este vídeo en el que se ve una pareja de secretarios con sus polluelos y su impecable manera de cazar a cámara lenta:

REPRODUCCIÓN

El secretario es bastante social, en grupos de 2 a 5 individuos, aunque pueden ser solitarios ocasionalmente. El ritual de apareamiento incluye vuelos ondulantes por parte del macho y caídas en picado, unido a llamadas guturales. Macho y hembra también se persiguen con las alas abiertas de manera similar a cuando cazan una presa. Forman parejas monógamas para toda la vida, el apareamiento se produce en el suelo y ocasionalmente en lo alto de los árboles, preferiblemente entre agosto y marzo.

Secretario en el nido con un par de huevos. Foto: Hispalois

Construyen el nido en las ramas de las acacias, que pueden reutilizar año tras año hasta que es demasiado pesado. Ponen de 1 a 3 huevos de color blanco verdoso en intervalos de 2 o 3 días, aunque el pollito más débil suele morir al poco tiempo. Los huevos son incubados principalmente por la hembra, aunque el macho puede participar de la incubación, y dura unos 42-46 días. Los polluelos se pondrán de pie a las 6 semanas y al cabo de poco tiempo sus padres les enseñarán a cazar. Su plumaje es más oscuro y en sucesivas mudas obtendrán el color de los adultos. Vivirán hasta los 15 años como máximo aproximadamente en estado salvaje.

Polluelos de secretario con su plumaje oscuro. Fuente

En este vídeo hecho con una cámara oculta en un nido puedes observar cómo el secretario regurgita el alimento para alimentar a su pollito:

DISTRIBUCIÓN, AMENAZAS Y CONSERVACIÓN

El secretario se distribuye por la sabana y pastizales abiertos africanos (sur del Sáhara) y no es migratorio. Está clasificado como vulnerable por la Lista Roja de la IUCN y aparece en el apéndice II del CITES.

Sagittarius serpentarius distribution map
Distribución del secretario. Fuente: IUCN

A pesar de que algunos ejemplares viven en zonas protegidas como parques naturales, su población está descendiendo probablemente debido a la degradación del hábitat, la alteración, el envenenamiento, la caza y la captura para el comercio. Los depredadores naturales de los pollitos son los cuervos, cornejas, tocos y cálaos, grandes búhos y milanos.

Aunque tradicionalmente es admirado en África, para su conservación hay medidas propuestas como un programa de vigilancia para obtener una estimación de la población y el seguimiento de la tendencia de la especie. Se propone también en las zonas donde la especie está disminuyendo, aumentar la conciencia de las amenazas entre la población local, en particular los ganaderos. También se quiere hacer frente a la captura y el comercio de la especie.

Como curiosidad final, el secretario es el emblema de la República de Sudán, aparece en el escudo de armas de Sudáfrica y en multitud de sellos de diferentes países africanos.

Emblema de Sudán. Fuente

 

Escudo de armas de Sudáfrica. Fuente

REFERENCIAS

SaveSaveSaveSaveSaveSave

SaveSaveSaveSave

SaveSave

¡Que no te piquen las chinches!

Al oír esta expresión, más de uno habrá temido sufrir las picaduras de esos pequeños bichos llamados “chinches” al irse a dormir (especialmente en una cama ajena). Sin embargo, lo cierto es que ni todas las chinches pican, ni todas se esconden en las camas, ni todas son tan pequeñas como estos compañeros nocturnos.

¿Qué son realmente las chinches? ¿Todas son dañinas? ¿Dónde se encuentran? Descubre su diversidad en este artículo, ¡y olvídate de una vez por todas de su mala fama!

¿Qué son?

Al referirse a las chinches, a menudo la gente no es consciente de la gran diversidad que esconden estos organismos, las cual va más allá de la idea de esos pequeños insectos que nos pican mientras dormimos. Las chinches pertenecen al suborden de los Heteroptera, un taxón de distribución cosmopolita que incluye más de 40.000 especies a nivel mundial; de hecho, constituyen el grupo de insectos más grande con metamorfosis sencilla. Su fósil más antiguo, Paraknightia magnifica, data del Pérmico superior en Australia (260-251 MA).

Este suborden se clasifica dentro del orden de los Hemiptera junto con otros subórdenes antiguamente agrupados en uno sólo (“Homoptera”), el cual incluía organismos tan conocidos como las cigarras (Cicadidae) o los pulgones (Aphididae).

¿Cómo los reconocemos?

Los heterópteros presentan un amplio abanico de formas y tamaños, oscilando entre apenas un milímetro a varios centímetros. Los miembros más pequeños pertenecen a las familias Anthocoridae, Microphysidae, Ceratocombidae, Dipsocoridae, Aepophilidae y Leptopodidae, apenas visibles. Entre los miembros más grandes se encuentran algunas especies de la familia Belostomatidae, como Lethocerus indicus con sus 6,5-8 cm de longitud.

A pesar de esto, constituyen un grupo monofilético con, al menos, tres caracteres morfológicos únicos o sinapomorfías:

  1. Piezas bucales de tipo picador-chupador, alargadas en forma de estilete.

    Piezas bucales del depredador Arilus cristatus (Reduviidae). Imagen propiedad de John Flannery en Flicker (CC 2.0).
  2. Glándulas odoríferas pares.
  3. Antenas con 4 segmentos.

Además, sus alas anteriores o hemiélitros se dividen en dos regiones fácilmente diferenciables: una basal endurecida y una distal membranosa, considerado un carácter derivado. De ahí que recibieran el nombre de Heteroptera (del griego “hetero”, diferente; “-pteron”, ala).

Pentatomidae. La parte superior de las alas anteriores está endurecida, mientras que la distal es membranosa. Imagen propiedad de Mick Talbot en Flickr (CC 2.0).

Ecología

Ciclo de vida

Los heterópteros llevan a cabo una metamorfosis sencilla, por lo que juveniles y adultos apenas presentan diferencias y conviven en el mismo hábitat. Tras salir del huevo, los juveniles o ninfas experimentan diversas mudas sucesivas, aumentando su tamaño. Finalmente, tras una última muda conocida como muda imaginal, alcanzan la fase adulta o imago.

Ciclo de desarrollo de los heterópteros. Imagen propiedad de Encyclopedia Britannica, Inc. (link).

Los adultos se diferencian de las ninfas por presentar alas, una nueva disposición de las aberturas de las glándulas odoríferas, un número diferente de segmentos tarsales (patas) y antenales, ocelos, ornamentación (espinas y pelos glandulares), rasgos sexuales en los segmentos terminales del abdomen y, en ocasiones, el patrón de coloración, además de una mayor talla y consistencia del tegumento o exoesqueleto.

Nimfa de Nezara viridula (Pentatomidae), aún carente de alas. Imagen propiedad de S. Rae en Flickr (CC 2.0).

Comunicación y defensa

Los individuos de una misma especie se comunican principalmente mediante la emisión de feromonas volátiles que emiten a través de las glándulas odoríferas, gracias a las cuales pueden agruparse (feromonas de agregación) o reunirse para la reproducción (feromonas sexuales). Aunque menos estudiado, también se han citado casos de especies que emiten sonidos por estridulación, es decir, frotando dos partes del cuerpo entre sí como hacen, por ejemplo, las cigarras.

Los heterópteros también presentan mecanismos defensivos activos y pasivos:

  • Entre los métodos pasivos se encuentran las características del propio cuerpo (por ejemplo, estructuras lisas, redondeadas, que dificultan el agarre), la inactividad (no moverse para pasar desapercibido) y la cripsis o el mimetismo. Dentro de las cripsis o mimetismos, destacan 1) la mimesis de color (homocromía), por ejemplo, con la vegetación, 2) la mimesis de forma (homotipia), mediante la cual se confunden con estructuras de su entorno, ya sean vegetales u otros animales (por ejemplo, imitando a hormigas en el caso de especies mirmecomorfas, un tipo de mimetismo batesiano) y 3) la disrupción de la silueta mediante formas que dificultan marcar los límites del individuo con su entorno.
Leptoglossus occidentalis (Coreidae), con sus tibias posteriores aplanadas simulando hojas. Imagen propiedad de Giancarlodessi (CC 3.0).
Myrmecoris gracilis (Miridae), un claro ejemplo de mirmecomorfia. Imagen propiedad de Michael F. Schönitzer (CC 4.0).
  • Entre los métodos activos, destacan 1) la huida, 2) los picotazos, 3) el desprendimiento de apéndices para confundir y 4) la emisión de sustancias malolientes o irritantes mediante las glándulas odoríferas; en muchas ocasiones, adquieren estas sustancias irritantes o tóxicas a través de las plantas que ingieren. También las hay que emiten sonidos intimidatorios mediante estridulación.

Formas de vida y diversidad

Si bien casi todo el mundo conoce a las chinches por su alimentación basada en la ingesta de sangre, éste no es ni mucho menos su único modo de vida.

  • Terrestres

La mayoría de heterópteros vive en distintos ambientes terrestres, sobre plantas o en el suelo, pudiendo ser totalmente fitófagos (dieta basada en fluidos vegetales) o depredadores de otros insectos que se mueven entre la vegetación, los cuales además pueden ingerir líquidos vegetales para complementar su dieta. También los hay que viven bajo la corteza alimentándose de hongos, o en el suelo nutriéndose de raíces. Algunos ejemplos de familias terrestres fitófagas son Pentatomidae y Coreidae; entre las chinches depredadoras, las cuales utilizan su estilete para inocular agentes proteolíticos a sus presas, disolverlas y succionar su contenido, encontramos muchos representantes de la familia Reduviidae.

  • Acuáticos y semiacuáticos

Existe una gran diversidad de formas acuáticas o semiacuáticas depredadoras y fitófagas, las cuales presentan adaptaciones para vivir en estos ambientes, como la presencia de pelos hidrófugos (repelen el agua). La mayoría vive en lagos y ríos, ya sea únicamente en su superficie (semiacuáticos) o sumergidos.

Las especies semiacuáticas suelen presentar patas y antenas largas que, junto con los pelos hidrófugos, les ayudan a sostenerse sobre el agua; un ejemplo conocido de chinches semiacuáticas son los zapateros (familia Gerridae), abundantes en Europa.

Zapatero (Gerris sp.). Imagen propiedad de Webrunner (CC 3.0)

En cambio, las especies acuáticas suelen presentar algún par de patas transformado en paletas natatorias; un buen ejemplo son los notonéctidos (familia Notonectidae), los cuales presentan el último par de patas aplanadas y con franjas de pelos para aumentar su superficie.

Notonecta sp. (Notonectidae). Imagen propiedad de Jane Burton/Bruce Coleman Ltd. (link).

Los heterópteros acuáticos necesitan el aire para respirar, por lo que periódicamente realizan ascensos a la superficie para captar oxígeno. Para ello, han desarrollado múltiples estrategias, como absorber aire directamente hacia su sistema respiratorio o traqueal mediante un sifón (familia Nepidae) o capturar burbujas de aire mediante los pelos hidrófugos (familia Notonectidae). Otras, simplemente, quedan rodeadas de una fina película de aire al salir del agua (plastron) gracias a los pelos hidrófugos.

  • Hematófagos

También hay heterópteros que se alimentan de sangre como parásitos de aves y mamíferos, pudiendo ser potenciales vectores de enfermedades. Este es el caso de los Cimicidae (como Cimex lectularius, la chinche de las camas que da fama al grupo) y algunos grupos de Reduviidae, como la subfamilia Triatominae o vinchucas, agentes vectores de la enfermedad de Chagas en Centro y Sudamérica principalmente (siendo Triatoma infestans su mayor vector).

Ninfa de Cimex lectularius o chinche de las camas. Imagen de dominio público.
Triatoma sp. (Triatominae). Imagen propiedad de Bramadi Arya (CC 4.0)

Interés científico

Los heterópteros son interesantes por distintos motivos:

  • Contribuyen a regular las poblaciones de algunas plagas de insectos en bosques y cultivos, siendo un elemento esencial en el control integrado de plagas. Es el caso de algunos heterópteros depredadores de las familias Reduviidae, Anthocoridae, Miridae, Nabidae y Geocoridae. Sin embargo, algunos heterópteros fitófagos también pueden desarrollarse como plagas.
  • Han sido un modelo científico para estudiar la fisiología de los insectos.
  • Forman una parte importante de la dieta humana en algunos países, siendo especialmente consumidos los pentatómidos. También son muy apreciados en Asia algunos heterópteros acuáticos, como Lethocerus sp. (Belostomatidae) en Vietnam y Tailandia.
Lethocerus sp. Imagen propiedad de Judy Gallagher en Flickr (CC 2.0).
  • Son vectores de enfermedades o causantes de malestar. El caso más clásico es el chinche de las camas (Cimex lectularius), el cual se ha convertido en una plaga frecuente en regiones templadas; algunos cimícidos también resultan dañinos para las aves de corral. Por otro lado, y especialmente en América, los redúvidos de la subfamilia Triatominae son agentes vectores de enfermedades (como la enfermedad de Chagas causada por el protozoo Trypanosoma cruzi).

.                .                 .

Todos los organismos tienen alguna función o utilidad, tan sólo hay que indagar un poco para averiguarlo. ¡Incluso las chinches que tanta gente teme!

Referencias

Foto de portada propiedad de Pavel Kirillov en Flickr, con licencia Creative Commons 2.0. (link).

De la medicina tradicional a la medicina personalizada

Desde la prehistoria, donde la medicina tuvo sus comienzos con plantas, minerales y partes de animales; hasta día de hoy, la medicina ha evolucionado a pasos de gigante. Gran parte de la “culpa” de este hecho se la debemos a la genética, que nos permite hablar de medicina personalizada. De este tipo de medicina es de la que trata el siguiente artículo.

LA EVOLUCIÓN DE LAS ENFERMEDADES

Para hablar de medicina debemos conocer primero las enfermedades. Pero no podemos pensar que todas las enfermedades son genéticas, sino que existen enfermedades relacionadas con cambios anatómicos, fruto de nuestra evolución.

El chimpancé es el animal actual más cercano a nosotros, los humanos, con el que compartimos el 99% de nuestro genoma. A pesar de esto, los humanos tenemos características fenotípicas muy particulares como el cerebro más desarrollo, tanto a tamaño como a expansión de la corteza cerebral; piel sudorosa sin pelo, postura bípeda y dependencia prolongada de las crías, que permite la transmisión de conocimientos durante más tiempo; entre otras.

Posiblemente, la postura bípeda fue clave para que se produjera pronto la divergencia entre el linaje de chimpancé y el de humanos; y también es la razón de la aparición de algunas enfermedades relacionadas con factores anatómicos. Entre ellas encontramos hernias, hemorroides, varices, desórdenes de la columna, como hernias de los discos intervertebrales; osteoartritis en la articulación de la rodilla, prolapso uterino y dificultades en el parto.

El hecho de que la pelvis se remodelara (Figura 1) y fuera más estrecha resultó en problemas obstétricos millones de años después, cuando el cerebro se expandió y, por consecuencia, el cráneo también. Las cabezas de los fetos eran más largas y grandes dificultando el parto. Esto explica porque los partos de los humanos son más largos y prolongados en comparación con los de los chimpancés y otros animales.

19.jpg
Figura 1. Comparación de la pelvis en humanos y chimpancés en postura bípeda (Fuente: Libros maravillosos – La especie elegida (capítulo 5))

La evolución hacia la vida moderna nos ha comportado muchos cambios en todos los sentidos. En comparación con nuestros antepasados cazadores y recolectores (Figura 2), nuestra dieta ha cambiado mucho y no tiene nada que ver con lo que comen el resto de primates. Para estos últimos, la fruta representa la mayoría de la ingesta, pero para nosotros lo es la carne roja. Además, somos los únicos animales que seguimos alimentándonos de leche pasado el período de lactancia.

cazadores y recolectores.jpg
Figura 2. Imagen de humanos cazadores y recolectores (Fuente: Río Verde en la historia)

Si al cambio en la dieta le añadimos el sedentarismo y la poca actividad física de los humanos modernos, puede ayudar a explicar la gravedad y frecuencia de algunas enfermedades humanas modernas.

El estilo de vida también puede producirnos afectaciones. Por ejemplo la miopía, que su tasa es mayor en individuos occidentales que leen mucho o hacen actividades de visión cercana, en comparación a individuos de pueblos aborígenes.

Otro ejemplo claro es la alteración en la etapa reproductiva femenina. Actualmente las mujeres tienen hijos cada vez más tarde. Esto también va ligado a una disminución de la duración de la lactancia materna. Estos cambios, que socialmente se pueden considerar positivos, tienen efectos negativos sobre la salud de los órganos reproductivos. Está demostrado que la combinación de menarquia precoz, la lactancia limitada o inexistente y una menopausia más tardía son los principales factores de riesgo para cáncer de mama y ovario.

Los seres humanos cada vez vivimos más años y queremos la mejor calidad de vida. Es fácil que a mayor longevidad aparezcan más enfermedades, por el deterioro del organismo y de sus células.

LA EVOLUCIÓN DE LA MEDICINA

La historia de la medicina es la historia de la lucha de los hombres contra la enfermedad y, desde comienzos de este siglo, también es la historia del esfuerzo humano por mantener la salud.

Los conocimientos científicos de la medicina los hemos adquirido basándonos en la observación y en la experiencia, pero no siempre ha sido así. Nuestros antepasados experimentaron las enfermedades y el temor a la muerte antes de poderse hacer una imagen racional de ellas, y la medicina de entonces se hallaba inmersa en un sistema de creencias, mitos y ritos.

Pero en los últimos años ha nacido la genómica personalizada, que te dice tus factores de riesgo. Esto abre una puerta a la medicina personalizada, que ajusta los tratamientos a los pacientes dependiendo de su genoma (Figura 3). Utiliza la información de los genes y proteínas de una persona para prevenir, diagnosticar y tratar una enfermedad, y todo gracias a la secuenciación del genoma humano.

PGX_BROCHURE.jpg
Figura 3. La medicina personalizada pretende tratar a las personas individualmente, según su genoma (Fuente: Indiana Institute of Personalized Medicine)

Los métodos moleculares que hacen posible la medicina de precisión, incluyen pruebas de variación de genes, proteínas y nuevos tratamientos dirigidos a mecanismos moleculares. Con los resultados de estas pruebas y tratamientos se puede determinar el estado de la enfermedad, predecir el estado futuro de la misma, la respuesta al medicamento y el tratamiento o, incluso, el papel de los alimentos que ingerimos en determinados momentos, lo que resulta de gran ayuda a los médicos a individualizar el tratamiento de cada paciente.

Para ello tenemos a nuestro alcance la nutrigenética y la nutrigenómica, que al igual que la farmacogenética y la farmacogenómica, ayudan al avance de una medicina cada vez más dirigida. Por lo tanto, estas disciplinas son hoy en día uno de los pilares de la medicina personalizada, ya que supone tratar cada paciente de forma individualizada y a medida.

La evolución hacia la medicina de precisión es personalizada, preventiva, predictiva y participativa. Cada vez hay más acceso a la información y el paciente es más proactivo, adelantándose a los problemas, previniéndolos o estar preparados para enfrentarlos eficientemente.

REFERENCIAS

  • Varki, A. Nothing in medicine makes sense, except in the light of evolution. J Mol Med (2012) 90:481–494

  • Nesse, R. and Williams, C. Evolution and the origins of disease. Sci Am. (1998) 279(5):86-93

  • Mackenbach, J. The origins of human disease: a short story on “where diseases come from”. J Epidemiol Community Health. (2006) 60(1): 81–86
  • Foto portada: Todos Somos Uno

MireiaRamos-castella

¿De dónde vienen los nombres de las especies?

Todos los seres vivos del planeta conocidos poseen nombres que permiten su identificación. Sin embargo, únicamente los nombres científicos se consideran válidos en biología para su clasificación. ¿Quién se encarga de asignar estos nombres? ¿Siempre ha sido así?, y lo más importante, ¿Existen normas a la hora de poner un determinado nombre?

En otro post, desde All you need is Biology os hablamos de la clasificación y la filogenia de los organismos. En este, te explicamos cómo lo hacen los biólogos para ponerles nombre. ¡Descubrirás muchas curiosidades!

La importancia de los nombres científicos

Si nos preguntan qué es un perro o un gato, todos sabremos de qué animales se trata. Sin embargo, estos nombres no resultan útiles desde un punto de vista científico (aunque los biólogos los usemos muchas veces), especialmente cuando se realizan estudios y publicaciones. Los nombres comunes (“perro”, “gato”) no son constantes; cada idioma, cada país, e incluso cada región, dispone de sus propios términos para designar a los mismos organismos. Incluso a veces cambian con el tiempo o son usados para designar a animales distintos (una langosta puede ser un crustáceo marino o un insecto del orden de los ortópteros).

Como veis, esto puede llevar a confusión. Si alguien publica que ha llevado a cabo un estudio sobre la reproducción en poblaciones de guacamayos, no sabríamos exactamente de qué especie nos están hablando; el nombre común de esta ave varía entre países y existen diferentes especies de guacamayos, por lo que el estudio no nos diría gran cosa.

Es por esto que la correcta clasificación y designación de nombres científicos es tan importante: son constantes a nivel mundial (se evitan problemas de traducción) y aluden a un único organismo sin ambigüedades.

Actualmente, la designación de nombres científicos se ciñe a la nomenclatura binomial, o lo que es lo mismo, el nombre científico de cada especie está compuesto por dos términos: el género (un nivel de clasificación superior a la especie) y el epíteto o nombre específico (que no la especie, como muchos suelen confundir). Mientras que el primer término tiene validez por sí solo, el segundo sólo tiene valor si va precedido del género.

Así, y siguiendo con el ejemplo anterior, los denominados guacamayos en este estudio en realidad pertenecen al género Ara, pero existen diversas especies de guacamayos relacionadas entre sí dentro de este género (Ara ararauna, Ara glaucogularis, Ara militaris…).

Guacamayo de la especie Ara ararauna. Imagen de Ralph Daily, CC.

Ahora bien, ¿esto ha sido siempre así? ¿Cómo ha cambiado la forma de denominar a las especies?

Linneo, el padre de la nomenclatura binomial

Desde siempre, los biólogos han tratado de clasificar y dar nombre a los organismos. La rama encargada de definir y dar nombre a grupos de organismos basándose en sus características compartidas recibe el nombre de taxonomía.

En un principio, no existía un consenso claro sobre cómo debían asignarse los nombres. Para los primeros “taxónomos”, era especialmente importante, por ejemplo, la diferenciación e identificación de plantas venenosas y medicinales, en relación a las cuales ya existen algunos documentos del Egipto de hace más de 3000 años.

El primero en clasificar formalmente a los organismos fue Aristóteles (384-322 A.C.), el cual hizo la primera distinción entre animales y plantas, además de iniciar las primeras clasificaciones en base a las “partes” de los organismos: si tenían cuatro patas, el cuerpo caliente, etc.

Durante la edad media y gran parte de la edad moderna temprana, la mayoría de científicos seguían el sistema aristotélico. Gracias a las mejoras en los utensilios de observación, como el desarrollo de las primeras lentes ópticas durante el siglo XVI y XVII, algunos empezaron a mejorar sus descripciones hasta ir dejando poco a poco de lado este sistema. La taxonomía como tal empezaba a florecer.

Sin embargo, a pesar de que las clasificaciones de las especies mejoraban, entre los taxónomos seguía sin existir un consenso sobre cómo debían asignarse sus nombres. Previamente al sistema binomial que usamos actualmente, las especies eran denominadas mediante un término (el género) y, a continuación, un nombre o epíteto específico formado por una o diversas palabras que describían la especie. Este sistema, conocido como sistema polinomial, permitía la existencia de nombres tan largos como: Plantago foliis ovato-lanceolatus pubescentibus, spica cylindrica, scapo tereti. Claramente, este sistema no resultaba nada óptimo.

Entre el siglo XVI-XVII, Caspar Bauhin dio los primeros pasos para simplificar este sistema, reduciendo en muchos casos los nombres a únicamente dos términos. Sin embargo, fue el botánico sueco Carl von Linné o Linneo (o en su nombre latinizado, Carolus Linnaeus) quien formalizó el uso de la nomenclatura binomial en su publicación Species Plantarum (1753). A partir de este momento, las especies recibían un nombre con únicamente dos términos: el género y un término trivial designado por su descriptor; por ejemplo, Panthera tigris (tigre).

Carl von Linné. Imagen de Dominio Público.

El hecho de que se fijara este sistema resulta importante por tres motivos:

  • Su economía: sólo se necesitan dos palabras para identificar a una especie de forma inequívoca.
  • Su difusión y uso generalizado por la comunidad científica: ésta regula y fomenta su uso.
  • Su estabilidad: se trata de conservar los nombres a toda costa a pesar de que se realicen cambios a posteriori en la clasificación del organismo.

Cómo dar nombre a un organismo: los códigos de nomenclatura

Taxonomía y nomenclatura son dos conceptos inseparables, pero diferentes. Mientras que la taxonomía es la ciencia encargada de la descripción y clasificación de grupos de organismos, la nomenclatura es la herramienta que permite a los taxónomos establecer los nombres de los mismos.

En 1758, Linneo estableció las bases para llevar a cabo una clasificación objetiva de todas las especies en la décima edición de su obra Sistema Naturae:

  • Cada especie biológica debe tener asignado un nombre científico, único y universal.
  • Cuando una especie reciba dos o más nombres científicos asignados por diferentes investigadores, se respetará el más antiguo.
  • Los nombres científicos se componen de dos palabras en latín (o griego): la primera determina el género y la segunda, la especie dentro de ese género.
  • La inicial del género debe escribirse en mayúscula, mientras que el nombre específico debe escribirse en minúscula. Por otro lado, ambos términos deben escribirse en cursiva o subrayados.
Portada de la décima edición de Sistema Naturae. Imagen de Dominio Público.

Si bien estos puntos son sencillos, la nomenclatura se ha ido volviendo más compleja. Actualmente, existen códigos internacionales de nomenclatura para cada grupo de organismos, como el ICZN (International Code of Zoological Nomenclature) o el ICN (International Code of Nomenclature for algae, fungi, and plants), entre otros. Los taxónomos de cada especialidad deben obedecer a sus respectivos códigos a la hora de poner nombre a sus organismos.

Dos de los criterios más importantes para la denominación de especies son la validez y la disponibilidad de los nombres. Pongamos por ejemplo que descubrimos una nueva especie de avispa del género Polistes: para empezar, el nombre que le asignemos (Polistes x) debe estar disponible, es decir, debe cumplir los requisitos necesarios para poder asignarse. Estos requisitos están recogidos en los respectivos códigos, los cuales toman como referencia los criterios del sistema binomial de Linneo. Además de los citados anteriormente y de otros tantos, un nombre es disponible si va acompañado de una descripción. La disponibilidad de un nombre puede cambiar ante ciertas circunstancias; por ejemplo, un nombre considerado no disponible por ausencia de descripción, puede volver a estar disponible si vuelve a publicarse siguiendo los criterios del código.

Por otro lado, el nombre debe ser válido, es decir, que no haya sido usado previamente para designar a otro organismo o considerado inválido. Por ejemplo, dos taxónomos describen la misma especie con nombres distintos y un año de diferencia; en este caso, el nombre válido será el más antiguo y el segundo pasará a ser un sinónimo aplicando el principio de prioridad, dejando de ser válido para su uso. Es por esto que un taxónomo debería realizar un estudio previo de las especies existentes, evitando describirlas por duplicado o usando nombres ya existentes.

Cuando poner nombres se nos va de las manos…o no

A la hora de poner nombre a una especie, lo más habitual es que se haga en base a alguna característica específica del organismo (Dosidicus gigas (calamar gigante)), su localidad (Synergus mexicanus (avispa de las agallas mexicana)) o en honor a familiares u otros científicos. Lo mismo ocurre con los géneros u otros grupos.

Sin embargo, el mundo de la nomenclatura está lleno de curiosidades, desde científicos que asignan nombres extravagantes, pasando por los que aprovechaban la oportunidad para insultar a otros científicos, a aquellos que ponen nombres de sus personajes o series favoritas:

  • Existe un género de polillas denominado La (por Bleszynski, 1966). Su ambigüedad con el artículo “la” vuelve locos a los motores de búsqueda en Internet (además de no saber si se está hablando de un género…). Si eso no fuera suficiente, algunas de sus especies recibieron nombres tan originales como La cerveza, La cucaracha o La paloma.
  • Mientras que algunos se quedan cortos, otros se pasan: Gammaracanthuskytodermogammarus, Rhodophthalmokytodermogammarus y Siemienkiewicziechinogammarus son nombres de géneros que el naturalista Dybowski asignó a diferentes anfípodos (crustáceos) del lago Baikal. ¡Debió parecerle muy divertido!
  • Durante un tiempo, fue costumbre usar los epítetos como medio para insultar a otros científicos (por ej. stupidus). Por suerte, actualmente está estrictamente prohibido.
  • Abra cadabra, Aha ha, Attenborosaurus (género de dinosaurio dedicado al naturalista David Attenborough), Acledra nazgul, Desmia mordor (ambos en honor al Señor de los Anillos), entre muchos otros.

Cabe decir que los respectivos códigos tratan de evitar este tipo de nombres, aunque no dejan de ser divertidos. Y si no has tenido suficiente, échale un ojo a este listado. ¡No te defraudará!

.           .           .

¿Todavía piensas que ponerle un nombre a un organismo es tarea fácil?

Referencias

Foto de portada realizada por Irene Lobato Vila (autora del artículo) en el Museo Nacional de Historia Natural del Smithsonian (Washington D.C., EUA).

Biología y vida extraterrestre

Frecuentemente aparecen nuevas noticias sobre planetas de reciente descubrimiento que podrían albergar vida extraterrestre. El avance científico no para de arrojar nueva información sobre Marte, otros mundos con agua y seres vivos extremadamente resistentes, como los tardígrados. ¿Pero podría existir la vida fuera de la Tierra? ¿Qué es la vida? ¿Qué se necesita para que se mantenga? De ello se encarga la astrobiología. ¡Conócela!

ASTROBIOLOGÍA Y EXOBIOLOGÍA

La astrobiología es un conjunto de distintas disciplinas científicas que estudia la existencia de la vida en el universo. Para ello combina conocimientos de biología, física, química, astronomía, ecología, geografía, geología, ciencia planetaria y biología molecular. Dentro de la astrobiología, la exobiología estudia científicamente las posibilidades de vida fuera de nuestro planeta. No hay que confundirla con la ufología, una pseudociencia. La astrobiología intenta responder a preguntas tan apasionantes como:
– ¿Qué es la vida?
– ¿Cómo apareció la vida en la Tierra?
– ¿Cómo evoluciona, se desarrolla la vida y cuál es su adaptabilidad?
– ¿Cuál es el futuro de la vida en la Tierra y otros lugares?
– ¿Existe vida en otros mundos?

No, ni esto es un marciano ni es astrobiología. Fuente: Quo

¿QUÉ ES LA VIDA?

Aunque parezca una pregunta banal, la vida no es fácil de definir. Aparentemente podemos reconocer si los seres están vivos o no si realizan ciertas funciones y poseen ciertas características:

  • Nutrición: obtienen energía del exterior para mantener su medio interno constante (homeostasis).
  • Reproducción: pueden crear copias de sí mismos.
  • Relación: se relaciona con el medio y otros seres vivos.
  • Organización: los seres vivos estan formados por una o más células.
  • Variación: la variabilidad entre individuos permite a las especies evolucionar.

Los problemas empiezan cuando encontramos seres que no cumplen todas las características. El ejemplo más clásico serían los virus: son incapaces de reproducirse por sí mismos y carecen de estructura celular. Otro ejemplo serían los eritrocitos (glóbulos rojos) de mamíferos, células sin  material genético ni mitocondrias.

Microfotografía al microscopio electrónico del virus del Ébola (Foto pública de la CDC)

¿QUÉ SE NECESITA PARA QUE EXISTA VIDA?

Sólo conocemos un tipo de vida: el terrestre. Es por ello que los astrobiólogos necesitan tomarlo como referencia para saber qué buscar en otros lugares. ¿Podrían existir otras formas de vida distintas a las terrestres? Quizá, pero sería casi imposible reconocerlas. Si no sabes qué buscas, puede que lo encuentres pero no te des cuenta.

Se considera que para que aparezca y se desarrolle la vida se necesita:

  • Un líquido dónde tengan lugar reacciones químicas: en la Tierra, es el agua.
  • Un elemento con facilidad para formar compuestos estables: en la Tierra, es el carbono.
  • Una fuente de energía: en la Tierra, es el Sol.

Partiendo de esta base, se buscan planetas o satélites con estas características, aunque no se descartan otras posibilidades como metano líquido (es el caso de Titán, satélite de Saturno), etano, ácido sulfúrico, amoníaco o ácido acético como solvente, o formas de vida basadas en otros elementos como el silicio, una constante en relatos de ciencia-ficción.

Representación artística de los lagos de metano de Titán. Crédito: Steven Hobbs

¿QUÉ SE NECESITA PARA QUE SE MANTENGA LA VIDA?

El cuerpo celeste en cuestión también tiene que cumplir una serie de características para que la vida pueda mantenerse:

  • Abundancia de elementos químicos como el carbono, hidrógeno, oxígeno y nitrógeno para formar compuestos orgánicos.
  • Que el planeta/satélite se encuentre dentro de la zona de habitabilidad de su estrella. Resumidamente, que orbite a una distancia que permita unas temperaturas ni muy altas ni muy bajas.
Zona de habitabilidad (verde) según la temperatura de la estrella. Rojo: demasiado caliente, azul: demasiado frío. Fuente: NASA/Misión Kepler/D. Berry
  • Una fuente de energía suficiente para mantener la temperatura y permitir la formación de moléculas complejas.
  • Una gravedad adecuada para mantener una atmósfera y no aplastar a los seres vivos del planeta.
  • Que el planeta tenga un campo magnético para desviar la radiación incompatible con la vida proveniente de su estrella.
El campo magnético terrestre protege la vida del viento solar. Fuente: ESA

En nuestro Sistema Solar, los candidatos que posiblemente cumplen estas características son Marte, Europa y Ganimedes (satélites de Júpiter), EncéladoTitán (satélites de Saturno) y Tritón (satélite de Neptuno).

¿POR QUÉ EL CARBONO?

Los seres vivos estamos formados por células, y ésta a su vez, si vamos reduciendo la escala, de moléculas y átomos (como toda la materia). ¿Por qué la vida está basada en el carbono?

En realidad, en la constitución de los organismos intervienen 26 elementos, pero el 95% de la materia viva se compone de carbono (C), hidrógeno (H), nitrógeno (N), oxígeno (O), fósforo (P) y azufre (S). Podemos imaginarlos como los “ladrillos de la vida”: combinando estas piezas básicas, podemos obtener organismos complejos. Estos ladrillos pueden unirse a otros mediante enlaces covalentes. Metafóricamente, los átomos los podemos imaginar con esferas con manos los cuales se pueden agarrar a otras manos libres. Por ejemplo, la principal molécula de fuente de energía para todos los seres vivos es el ATP (Adenosín trifosfato, de fórmula C10H16N5O13P3).

enlaces químcos, moléculas, sulphur, phosphorus, hidrogen, oxigen, carbon, nitrogen, chemical bond
Representación esquemática de los átomos de carbono, hidrógeno, oxígeno, nitrógeno y fósforo y sus valencias (enlaces posibles). Producción propia basada en la figura 6.3 de “La vida en el espacio” (ver referencias)

El elemento candidato a sustentar la vida tendría que ser un elemento abundante capaz de formar gran cantidad de enlaces consigo mismo y con otros elementos. De los 5 elementos más abundantes en el universo:

  • Helio: no forma compuestos
  • Hidrógeno y oxígeno: tienen 1 y 2 manos, por lo que sólo pueden formar compuestos muy sencillos.
  • Nitrógeno: puede unirse a 3 átomos, pero no se conocen cadenas de varios átomos de nitrógeno.
  • Carbono: tendría 4 manos, con lo que puede unirse fuertemente con otros carbonos con enlaces simples, dobles, o triples. Esto le permite formar cadenas larguísimas y estructuras tridimensionales y aún le pueden “sobrar” manos con los que unirse a nitrógeno, oxígeno y azufre, fósforo, hidrógeno. Esta versatilidad permite construir moléculas químicamente activas y complejas, justamente la complejidad que hace posible la vida.
estructura química del adn, moléculas
Estructura química del ADN, donde se puede observar la importancia de la capacidad del carbono de formar largas cadenas y anillos. Fuente

¿Podría haber vida en otro lugar basada en un átomo distinto?

ALTERNATIVAS AL CARBONO

EXTRATERRESTRES DE SILICIO

Como establecer 4 enlaces es tan útil, el silicio es el primer candidato por el que apuestan biólogos y escritores de ciencia ficción, aunque no sea tan abundante como el carbono. El silicio (Si) también puede formar 4 enlaces y es abundante en planetas rocosos como la Tierra, pero…

  • El enlace Si-Si es bastante débil. En un medio acuoso, la vida basada en silicio no se mantendría durante mucho tiempo ya que muchos compuestos se disuelven en ella, aunque podría ser posible en otro medio, como nitrógeno líquido (Bains, W.).
  • Es muy reactivo. El silano por ejemplo (equivalente del metano, pero con un átomo de silicio en lugar de carbono) se enciende espontáneamente a temperatura ambiente.
  • Es sólido a la mayoría de temperaturas. Aunque puede formar estructuras con el oxígeno (sílice o dióxido de silicio), el resultado casi siempre es un mineral (cuarzo): demasiado simple y sólo reacciona fundido a 1000ºC.
  • No forma cadenas ni redes consigo mismo, debido a su mayor tamaño respecto el carbono. En ocasiones forma cadenas largas con oxígeno (siliconas), a las que quizá se podrían unir a otros grupos para formar moléculas complejas. Justamente el extraterrestre de la película Alien, el octavo pasajero posee tejidos de silicona. Los seres formados por siliconas serían más resistentes, lo cual lleva a especular qué tipo de condiciones extremas podrían soportar.
Horta, una forma de vida basada en el silicio aparecida en la serie de ciencia ficción Star Trek. Fuente

EXTRATERRESTRES DE NITRÓGENO Y FÓSFORO

Veamos algunas características del nitrógeno y fósforo por separado:

  • Nitrógeno: sólo puede formar 3 enlaces con otras moléculas y es poco reactivo.
  • Fósforo: sus enlaces son débiles y los enlaces múltiples poco comunes, aunque puede formar largas cadenas. El problema es que es demasiado reactivo.

Combinando los dos, se podrían obtener moléculas estables, pero los seres basados en nitrógeno y fósforo tendrían otros problemas: los compuestos de nitrógeno, de los cuales tendrían que alimentarse, no se encuentran en suficiente cantidad en los planetas y el ciclo biológico no sería favorable energéticamente hablando.

EXTRATERRESTRES DE BORO, AZUFRE Y ARSÉNICO

Las bioquímicas más improbables podrían basarse en estos elementos:

  • Boro: puede formar cadenas largas y unirse a otros elementos como el nitrógeno, hidrógeno o carbono
  • Azufre: puede formar cadenas largas, pero por su tamaño es altamente reactivo e inestable.
  • Arsénico: es demasiado grande para formar compuestos estables, aunque sus propiedades químicas son parecidas a las del fósforo.

En 2010, la revista Science publicó un estudio en el que se afirmaba haber descubierto una bacteria (GFAJ-1) capaz de vivir sólo de arsénico, letal para cualquier ser vivo. Rompía el paradigma de la biología al no usar el fósforo (recordad el ATP y la estructura del ADN) y abría nuevas vidas de estudio para la astrobiología. En 2012, dos investigaciones independientes refutaban la teoría de la investigadora Felisa Wolfe-Simon y su equipo. El fósforo sigue siendo esencial para que los organismos puedan vivir y desarrollarse en la Tierra.

La bacteria GFAJ-1. Fuente

Por el momento, estas bioquímicas hipotéticas no son más que especulaciones, por lo que los astrobiólogos siguen buscando vida basada en el carbono, aunque ya sabemos que la ciencia nunca nos deja de sorprender. Aunque pudiéramos identificar vida basada en otros elementos, si algún día encontramos vida extraterrestre (o viceversa) la revolución será tan grande que aunque sea basada en el carbono, dará mucho que hablar.

REFERENCIAS

Mireia Querol Rovira

SaveSaveSaveSaveSaveSave

SaveSaveSaveSave

SaveSave

SaveSave