Arxiu de la categoria: General

The extended phenotype: genetics beyond the body

Genes determine our eye color, height, development throughout life and even our behavior. All living beings have a set of genes that, when expressed, manifest themselves in a more or less explicit way in their body, modeling it and giving it a wide diversity of traits and functions. However, is it possible that the expression of some genes has effects beyond the body itself?

Discover some basic ideas about the extended phenotype theory.

The extended phenotype: genetics beyond the body

First of all, let’s talk about two basic, but not less important, concepts that will help you to understand the extended phenotype theory: genotype and phenotype.

Genotype

Genotype is the collection of genes or the genetic information that a particular organism possesses in the form of DNA. It can also refer to the two alleles of a gene (or alternative forms of a gene) inherited by an organism from its parents, one per parent.

The genetic information that a particular organism possesses in the form of DNA constitutes its genotype. Public domain image.

It should not be confused with the genome: the genome is the set of genes conforming the DNA that a species has without considering its diversity (polymorphisms) among individuals, whereas the genotype does contemplate these variations. For example: the human genome (of the whole species Homo sapiens sapiens) and the genotype of a single person (the collection or set of genes and their variations in an individual).

Phenotype

The genotype, or at least a part of it, expresses inside an organism thus contributing to its observable traits. This expression takes place when the information encoded in the DNA traduces to synthetize proteins or RNA molecules, the precursor to proteins. The set of observable traits expressed in an organism through the expression of its genotype is called phenotype.

Eye color (phenotype) is determined by the expression of a set of genes within an organism (genotype). Picture by cocoparisienne on Pixabay (public domain).

However, genes are not always everything when defining the characteristics of an organism: the environment can also influence its expression. Thus, a more complete definition of phenotype would be the set of attributes that are manifested in an organism as the sum of its genes and the environmental pressures. Some genes only express a specific phenotype given certain environmental conditions.

The extended phenotype theory

The concept of extended phenotype was coined by Richard Dawkins in his book “The Extended Phenotype” (1982). Dawkins became famous after the publication of what would be his most controversial work, “The Selfish Gene” (1976), which was a precursor to his theory of the extended phenotype.

In the words of Dawkins himself, an extended phenotype is one that is not limited to the individual body in which a gene is housed; that is, it includes “all the effects that a gene causes on the world.” Thus, a gene can influence the environment in which an organism lives through the behavior of that organism.

Dawkins also considers that a phenotype that goes beyond the organism itself could influence the behavior of other organisms around it, thus benefiting all of them or only one… and not necessarily the organism that expresses the phenotype. This would lead to strange a priori scenarios such as, for example, that the phenotype of an organism was advantageous for a parasite which afflicts it rather than for itself. This idea is summed up in what Dawkins calls the ‘Central Theorem of the Extended Phenotype’: ‘An animal’s behaviour tends to maximize the survival of the genes ‘for’ that behaviour, whether or not those genes happen to be in the body of the particular animal performing it’.

A complex idea, isn’t it? However, it makes sense if we take into account the basic premise from which Dawkins starts, which addresses in his work ‘The selfish gene’: the basic units of evolution and the only elements on which natural selection acts, beyond individuals and populations, are genes. So, organisms’ bodies are mere ‘survival machines’ improved to ensure the perpetuation of genes.

Examples of extended phenotype

Perhaps all these concepts seem very complicated, but you will understand them better with some examples. According to Dawkins, there exist three main types of extended phenotype.

1) Animal architecture

Beavers build dams and modify their surroundings, in the same way that a termite colony builds a termite mound and alters the land as part of their way of life.

Dam built by beavers. Picture by Hugo.arg (CC 4.0)
Termite mounds in Autralia. Public domain image.

On the other hand, protective cases that caddisflies build around them from material available in the environment improve their survival.

Caddisfly larva inside its protective case made up of vegetal material. Picture by Matt Reinbold (CC 2.0)

These are all examples of the simplest type of extended phenotype: the animal architecture. The phenotype is, in this case, a physical or material expression of the animal’s behavior that improves the survival of the genes that express this behavior.

2) Parasite manipulation of host behavior

In this type of extended phenotype, the parasite expresses genes that control the behavior of its host. In other words, the parasite genotype manipulates the phenotype (in this case, the behavior) of the host.

A classic example is that of crickets being controlled by nematomorphs or gordiaceae, a group of parasitoid ‘worms’ commonly known as hair worms, as explained in this video:

To sum up: larvae of hair worms develop inside aquatic hosts, such as larvae of mayflies. Once mayflies undergoe metamorphosis and reach adulthood, they fly to dry land, where they die; and it is at this point that crickets enter the scene: an adult cricket feeds on the remains of mayflies and acquires the hair worm larvae, which develop inside the cricket by feeding on its body fat. Adult worms must return to the aquatic environment to complete their life cycle, so they will control the cricket’s brain to ‘force’ it to find a water source and drop in. Once in the water, the worms leave the body of the cricket behind, which drowns.

Other examples: female mosquitoes carrying the protozoan that causes malaria (Plasmodium), which makes female mosquitoes (Anopheles) to feel more attracted to human breath than uninfected ones, and gall induced by several insects on different host plants, such as cynipids (microwasps).

3) Action at a distance

A recurring example of this type of extended phenotype is the manipulation of the host’s behavior by cuckoo chicks (group of birds of the Cuculidae family). Many species of cuckoo, such as the common cuckoo (Cuculus canorus), lay their eggs in the nests of other birds for them to raise in their place; also, cuckoo chicks beat off the competition by getting rid of the eggs of the other species.

Look how the cuckoo chick gets rid of the eggs of reed warbler (Acrocephalus scirpaceus)!

In this case of parasitism, the chick is not physically associated with the host but, nevertheless, influences the expression of its behavioral phenotype.

Reed warbler feeding a common cuckoo chick. Picture by Per Harald Olsen (CC 3.0).

.            .            .

There are more examples and studies about this concept. If you are very interested in the subject, I strongly recommend you to read ‘The selfish gene’ (always critical and from an open minded perspective). Furthermore, if you have good notions of biology, I encourage you to read ‘The extended phenotype’.

Main picture: Alandmanson/Wikimedia Commons (CC BY-SA 4.0)

El fenotipo extendido: la genética más allá del propio cuerpo

Los genes determinan nuestro color de ojos, altura, desarrollo a lo largo de la vida e, incluso, nuestro comportamiento. Todos los seres vivos poseen un juego de genes que, al expresarse, se manifiestan de una forma más o menos explícita en su cuerpo, modelándolo y otorgándole de una serie de rasgos y funciones. ¿Es posible, sin embargo, que la expresión de algunos genes tenga efectos más allá del propio cuerpo?

Descubre algunas ideas básicas sobre la teoría del fenotipo extendido.

El fenotipo extendido: la genética más allá del propio cuerpo

Antes de nada, necesitamos aclarar dos conceptos básicos que os ayudarán a entender mejor el concepto de fenotipo extendido: genotipo y fenotipo.

Genotipo

El genotipo es la colección de genes o información genética que posee un organismo en particular en forma de ADN. También puede referirse a los dos alelos de un gen (o formas alternativas de un gen) que hereda un organismo de sus progenitores, uno por progenitor.

La información que un organismo en particular posee en forma de DNA constituye su genotipo. Imagen de dominio público.

No debe confundirse con el genoma: mientras que el genoma hace referencia al conjunto de genes contenidos en el ADN de una especie sin tener en cuenta su diversidad (polimorfismos) entre individuos, el genotipo sí contempla estas variaciones. Por ejemplo: el genoma humano (de toda la especie Homo sapiens sapiens) y el genotipo de una única persona (el acervo o conjunto de genes y sus variaciones en un único individuo).

Fenotipo

El genotipo, o al menos parte de él, se expresa en el organismo contribuyendo a sus rasgos observables. Esta expresión tiene lugar cuando la información codificada en el ADN de los genes se utiliza para sintetizar proteínas o moléculas de ARN, el precursor de las proteínas. El conjunto de rasgos observables que se expresan a partir del genotipo recibe el nombre de fenotipo.

El color de los ojos (fenotipo) se manifiesta a partir de la expresión de los genes de cada organismo particular (genotipo); es decir, de sus alelos. Imagen de cocoparisienne de Pixabay (dominio público).

Sin embargo, los genes no lo son siempre todo a la hora de definir los rasgos de un organismo: el entorno también puede influir sobre su expresión. Así pues, una definición más completa de fenotipo sería el conjunto de atributos que se manifiestan en un organismo en particular como la suma de la expresión de sus genes y de las presiones del entorno sobre éstos. Algunos genes únicamente expresan un fenotipo concreto dadas ciertas condiciones ambientales.

La teoría del fenotipo extendido

El concepto de fenotipo extendido fue acuñado por Richard Dawkins en su libro “El Fenotipo Extendido” (1982). Dawkins se hizo famoso tras la publicación de la que sería su obra divulgativa más polémica, “El gen egoísta” (1976), la cual actúa como precursora de su teoría sobre el fenotipo extendido.

En palabras del propio Dawkins, un fenotipo extendido es aquel que no se limita al cuerpo individual en el que se aloja un gen; es decir, son “todos los efectos que un gen causa sobre el mundo”. Así pues, un gen puede influir en el medio ambiente en el que vive un organismo por medio del comportamiento de dicho organismo.

Dawkins también considera que un fenotipo que va más allá del propio organismo podría llegar a influir en el comportamiento de otros organismos a su alrededor, beneficiando así a todos ellos o únicamente a uno… y no necesariamente al organismo que expresa el fenotipo. Esto llevaría a escenarios a priori extraños como, por ejemplo, que el fenotipo de un organismo fuera ventajoso para un parásito que lo atacara en lugar de para él mismo. Esta idea se resume en lo que Dawkins llama el Teorema central del fenotipo extendido: “el comportamiento de un animal tiende a maximizar la supervivencia de los genes ‘para’ ese comportamiento, independientemente de que dichos genes estén o no en el cuerpo del animal que manifiesta ese comportamiento”.

Esta idea tan compleja cobra sentido si tenemos en cuenta la premisa básica de la que parte Dawkins, la cual trata en su obra “El gen egoísta”: la unidad básica de la evolución y único elemento sobre el que actúa la selección natural, más allá de los individuos y las poblaciones, son los genes, siendo los cuerpos de los organismos meras “máquinas de supervivencia” mejoradas para asegurar la perpetuación de los genes.

Ejemplos de fenotipo extendido

Quizá todos estos conceptos parecen muy complicados, pero lo entenderéis mejor con algunos ejemplos. Según Dawkins, existen tres tipos básicos de fenotipo extendido.

1) Arquitectura animal

Los castores construyen diques y modifican su entorno, de la misma manera que una colonia de termitas construye un termitero y altera el terreno, como parte de su forma de vida.

Dique construído por castores. Imagen de Hugo.arg (CC 4.0)
Termiteros en Australia. Imagen de dominio público.

Por otro lado, las casas o estuches que construyen los tricópteros a su alrededor a partir de material disponible en el medio mejoran su supervivencia.

Larva de tricóptero dentro de su estuche hecho con material vegetal. Imagen de Matt Reinbold (CC 2.0)

Todos estos son ejemplos del tipo de fenotipo extendido más simple: la arquitectura animal. El fenotipo es, en este caso, una expresión física o material del comportamiento del animal que contribuye a mejorar la supervivencia de los genes que expresan este comportamiento.

2) Manipulación del comportamiento del hospedador por parte del parásito

En este tipo de fenotipo extendido, el parasito expresa unos genes que controlan el comportamiento de su hospedador. Dicho de otra forma, el genotipo del parásito manipula el fenotipo (en este caso, el comportamiento) del parasitado.

Un ejemplo clásico es el de grillos siendo controlados por nematomorfos o gordiáceos, un grupo de “gusanos” parasitoides (en inglés, “hair worms”), como se explica en este vídeo:

En resumen: las larvas de estos gusanos se desarrollan en huéspedes acuáticos, como las larvas de las efímeras. Una vez las efímeras alcanzan la adultez tras la metamorfosis, se desplazan volando a tierra firme, donde mueren; y es aquí donde los grillos entran en escena: un grillo adulto se alimenta de los restos de las efímeras y adquiere los parasitoides, los cuales se desarrollan en el interior del grillo alimentándose de su grasa corporal. Los gusanos adultos deben volver al medio acuático para completar su ciclo vital, por lo que, para ello, controlarán el cerebro del grillo para “obligarle” a ir hasta una fuente de agua. Una vez en el agua, los gusanos dejan atrás el cuerpo del grillo, el cual muere ahogado.

Otros ejemplos son el de las hembras de mosquito portadoras del protozoo de la malaria (Plasmodium), el cual hace que las hembras de mosquito (Anopheles) se sientan más atraídas por el aliento humano que las no infectadas, y el de las agallas inducidas en plantas por varias insectos, como los cinípidos (pequeñas avispas).

3) Acción a distancia

Un ejemplo recurrente de este tipo de fenotipo extendido es la manipulación del comportamiento del hospedador por parte de los polluelos de cuco (grupo de aves de la familia Cuculidae). Muchas especies de cucos, como el cuco común (Cuculus canorus), ponen sus huevos en los nidos de otras aves para que éstas los críen en su lugar; al mismo tiempo, los polluelos de cuco eliminan la competencia deshaciéndose de los huevos de la otra especie.

¡Mirad cómo el polluelo de cuco se deshace de los huevos de carricero común (Acrocephalus scirpaceus)!

En este caso de parasitismo, el polluelo no está físicamente asociado al hospedador pero, sin embargo, influye en la expresión de su fenotipo conductual.

Carricero común adulto alimentando a un polluelo de cuco común. Imagen de Per Harald Olsen (CC 3.0).

.            .            .

Existen muchos más ejemplos y estudios acerca de este concepto. Si os interesa mucho el tema, os recomiendo la lectura del gen egoísta (siempre desde una mirada crítica y abierta). Si, además, tenéis unos buenos conocimientos en biología, os animo a leeros también el fenotipo extendido.  

Imagen de portada: Alandmanson/Wikimedia Commons (CC BY-SA 4.0)

El fenotip estès: la genètica més enllà del propi cos

Els gens determinen el nostre color d’ulls, la nostra alçada, guien el nostre desenvolupament al llarg de la vida i, fins i tot, el nostre comportament. Tots els éssers vius tenen gens que, un cop s’expressen, es manifesten d’una manera més o menys explícita en el seu cos, modelant-lo i atorgant-li tota una sèrie de trets i funcions. És possible, però, que l’expressió d’alguns gens tingui efectes més enllà del propi cos?

Descobreix algunes idees bàsiques sobre la teoria del fenotip estès.

El fenotip estès: la genètica més enllà del propi cos

Primer de tot, necessitem aclarir dos conceptes bàsics que us ajudaran a entendre millor el concepte de fenotip estès: genotip i fenotip.

Genotip

El genotip és la col·lecció de gens o informació genètica que posseeix un organisme en particular en forma d’ADN. També pot referir-se als dos al·lels d’un gen (o formes alternatives d’un gen) que hereta un organisme dels seus progenitors, un per progenitor.

La informació genètica que poseeix un organisme en particular en forma d’ADN constitueix el seu genotip. Imatge de domini públic.

No s’ha de confondre amb el genoma: mentre que el genoma fa referència al conjunt de gens continguts en l’ADN d’una espècie sense tenir en compte la seva diversitat (polimorfismes) entre individus, el genotip sí que contempla aquestes variacions. Per exemple: el genoma humà (de tota l’espècie Homo sapiens sapiens) i el genotip d’una única persona (conjunt de gens i les seves variacions en un únic individu).

Fenotip

El genotip, o com a mínim una part, s’expressa dins l’organisme contribuint als seus trets observables. Aquesta expressió té lloc quan la informació codificada en l’ADN dels gens s’utilitza per sintetitzar proteïnes o molècules d’ARN, el precursor de les proteïnes. El conjunt de trets observables que s’expressen a partir del genotip rep el nom de fenotip.

El color dels ulls (fenotip) es manifesta a partir de l’expressió dels gens de cada organisme particular (genotip); és a dir, dels seus al·lels. Imatge de cocoparisienne a Pixabay (domini públic).

Tanmateix, els gens no ho són sempre tot a l’hora de definir els trets d’un organisme: l’entorn també pot influir sobre la seva expressió. Així doncs, una definició més completa de fenotip seria el conjunt d’atributs que es manifesten en un organisme en particular com la suma de l’expressió dels seus gens i de les pressions de l’entorn sobre aquests. Alguns gens únicament expressen un fenotip concret donades certes condicions ambientals.

La teoria del fenotip estès

El concepte de fenotip estès va ser proposat per Richard Dawkins en el seu llibre “El Fenotip Estès” (1982). Dawkins es va fer famós després de la publicació de la que seria la seva obra divulgativa més polèmica, “El gen egoista” (1976), la qual li serví de base per a l’elaboració de la seva teoria sobre el fenotip estès.

Segons el propi Dawkins, un fenotip estès és aquell que no es limita al cos individual en el qual s’allotja un gen; és a dir, són “tots els efectes que un gen causa sobre el món”. Així doncs, un gen pot influir en el medi ambient en què viu un organisme per mitjà del comportament d’aquest organisme.

Dawkins també considera que un fenotip que va més enllà del propi organisme podria arribar a influir en el comportament d’altres organismes al seu voltant, beneficiant així a tots ells o únicament a un… i no necessàriament a l’organisme que expressa el fenotip. Això ens duria a escenaris a priori estranys com, per exemple, que el fenotip d’un organisme fora avantatjós per a un paràsit que l’ataqués en lloc de per a ell mateix. Aquesta idea es resumeix en el que Dawkins anomena el “Teorema central del fenotip estès”: “el comportament d’un animal tendeix a maximitzar la supervivència dels gens ‘per’ aquest comportament, independentment que aquests gens estiguin o no dins del cos de l’animal que manifesta aquest comportament”.

Aquesta idea tan complexa adquireix sentit si tenim en compte la premissa bàsica de la qual parteix Dawkins, la qual tracta en la seva obra “El gen egoista”: la unitat bàsica de l’evolució i únic motor de la selecció natural, més enllà dels individus i les poblacions, són els gens, sent els cossos dels organismes meres “màquines de supervivència” millorades per assegurar la perpetuació dels gens.

Exemples de fenotip estès

Potser tots aquests conceptes semblen molt complicats, però ho entendreu tot molt millor amb alguns exemples. Segons Dawkins, hi ha tres tipus bàsics de fenotip estès.

1) Arquitectura animal

Els castors construeixen dics i modifiquen el seu entorn, de la mateixa manera que una colònia de tèrmits construeix un termiter i altera el terreny, com a part del seu estil de vida.

Dic construït per castors. Imatge de Hugo.arg (CC 4.0)
Termiters a Austràlia. Imatge de domini públic.

D’altra banda, les cases o estoigs que construeixen els tricòpters al seu voltant a partir de material disponible en el medi milloren la seva supervivència.

Larva de tricòpter dins del seu estoig fet de material vegetal. Imatge de Matt Reinbold (CC 2.0)

Tots aquests són exemples del tipus de fenotip estès més simple: l’arquitectura animal. El fenotip és, en aquest cas, una expressió física o material del comportament de l’animal que contribueix a millorar la supervivència dels gens que expressen aquest comportament.

2) Manipulació del comportament de l’hoste per part del paràsit

En aquest tipus de fenotip estès, el paràsit expressa uns gens que controlen el comportament del seu hoste. Dit d’una altra manera, el genotip del paràsit manipula el fenotip (en aquest cas, el comportament) del parasitat.

Un exemple clàssic és el de grills sent controlats per nematomorfs o gordiacis, un grup de “cucs” parasitoides (en anglès, “hair worms”), com s’explica en aquest vídeo:

En resum: les larves d’aquests cucs es desenvolupen dins d’hostes aquàtics, com les larves de les efímeres. Quan les efímeres assoleixen l’edat adulta un cop feta la metamorfosi, es desplacen volant a terra ferma, on moren; i és aquí on els grills entren en escena: un grill adult s’alimenta de les restes de les efímeres i adquireix els parasitoides, els quals es desenvolupen a l’interior del grill alimentant-se del seu greix corporal. Els cucs adults han de tornar al medi aquàtic per a completar el seu cicle vital i, per fer-ho, controlen el cervell del grill per “obligar-lo” a anar fins a una font d’aigua. Un cop a l’aigua, els cucs deixen enrere el cos del grill, el qual mor ofegat.

Altres exemples són el de les femelles de mosquit portadores del protozou de la malària (Plasmodium), el qual fa que les femelles de mosquit (Anopheles) se sentin més atretes per l’alè humà que les no infectades, i el de les gales induïdes en plantes per diversos insectes, com els cinípids (petites vespes).

3) Acció a distància

Un exemple recurrent d’aquest tipus de fenotip estès és la manipulació del comportament de l’hoste per part dels pollets de cucut (grup d’aus de la família Cuculidae). Moltes espècies de cucuts, com el cucut comú (Cuculus canorus), ponen els ous en els nius d’altres aus perquè aquestes els criïn enlloc seu; al mateix temps, els pollets de cucut eliminen la competència desfent-se dels ous de l’altra espècie.

Mireu com el pollet de cucut es desfà dels ous d’una boscarla de canyar (Acrocephalus scirpaceus)!

En aquest cas de parasitisme, el pollet no està físicament associat a l’hoste, però influeix en l’expressió del seu fenotip conductual.

Boscarla de canyar alimentant un pollet de cucut comú. Imatge de Per Harald Olsen (CC 3.0).

.            .            .

Hi ha molts més exemples i estudis sobre aquest concepte. Si us interessa molt el tema, us recomano la lectura del gen egoista (sempre des d’una mirada crítica i oberta). Si, a més a més, teniu uns bons coneixements en biologia, us animo a llegir-vos també el fenotip estès.

Imatge de portada: Alandmanson / Wikimedia Commons (CC BY-SA 4.0)

The Asian giant hornet (Vespa mandarinia): What do we know about it?

Among the numerous exotic invasive organisms that have reached Europe and America, Asian wasps and hornets are some of the most commented on mass media, social networks and naturalistic forums. The Asian hornet (Vespa velutina) got Europe and, posteriorly, the Iberian Peninsula, becoming one of the greatest headaches for beekeepers and administrations as it is a very insatiable species. However, there exists an insect that concerns Westerner beekeepers even more than the Asian hornet: the Asian giant hornet (Vespa mandarinia).

What do we know about this species? Is it true is has been found in The West or is this a mere unfounded rumour? Keep reading to learn some more.

The Asian giant hornet (Vespa mandarinia): What do we know about it?

During my recent travel to Japan, I met face to face for the first time with one of the most amazing insects: the Asian giant hornet (Vespa mandarinia). Meeting this organism really inspired me to write this post.

The Asian giant hornet (Vespa mandarinia) is a hymenopteran native to the East and Southeast of Asia especially abundant in rural landscapes of Japan. Until recently, it was considered that the Japanese giant hornets belonged to an independent variety or subspecies (Vespa mandarinia japonica); however, this category is currently invalid.

Among the ‘true hornets’ (species belonging to the Vespa genus), the Asian giant hornet is the biggest worldwide. Workers of this species span between 3.5 to 4.0 cm long, whereas queens can reach a length between 5.0 to 6.0 cm, even more in some cases, and a wingspan of 3.5 to 7.5 cm depending on the specimen. A monster compared to the Asian hornet (Vespa velutina), which has a body length between 2.0 and 3.0 cm (3.5 in queens).

Vespa mandarinia Natural Museum of Natural Science Tokyo
Specimen of Vespa mandarinia (left) deposited in the main exhibition of the National Museum of Natural History of Tokyo, Japan. Picture by Irene Lobato Vila.

In fact, in Japan this species is commonly known as オオスズメバチ (oosuzumebachi), which can be translated as ‘sparrow wasp’.

How can we distinguish it from other related species?

The Asian giant hornet is easily recognizable and is distinguished from other Vespa species by its large size, as well as by having an orangish yellow head that can be seen even when the organism is in motion (and that differs from the rest of the body, which is darker), a well-developed clypeus and a very wide face seen from the front.

Face of Vespa mandarinia. Modified from the original picture took by Gary Alpert, CC 3.0.

In addition, and unlike the Asian hornet (V. velutina), it has darker legs (yellow in V. velutina) and the abdomen or metasoma with alternate yellow and black stripes (abdomen almost black, with the fourth segment yellow, in V. velutina).

Vespa mandarinia male
Vespa mandarinia. Picture by Yasunori Koide, CC 4.0.
Vespa velutina
Vespa velutina. Picture by Francis ITHURBURU, CC 3.0.

The Asian giant hornet is very similar to the European hornet (Vespa crabro). However, it can be easily distinguished from this species by the above-mentioned traits.

Comparisson Vespa
Vespa mandarinia (above), Vespa crabro (below, left), Vespa vulgaris (below, mid) and Vespa germanica (below, right). Picture by @carim_nahaboo on picbear.org.

Besides the genus Vespa, the Asian giant hornet must not be confused with Megascolia maculata, a very common species of the Scoliidae family in Europe and Middle East that ranges from 2 to 4 cm.

Megascolia maculata. Picture by gailhampshire, CC 2.0.

Behaviour and biology

Nesting

The Asian giant hornet is an eusocial species (a colonial and hierarchical organism, with coexisting sexual and asexual stages and with a strong sense of parental caring) that inhabits mainly in rural landscapes, on hills and low forests. In addition, it is the only species within the genus Vespa that nests almost exclusively in holes in the ground, rarely inside buildings. These can be pre-existing cavities (left by rotten roots, abandoned nests…) or, in contrast, holes made by the hornet itself.

During the reproductive season, V. mandarinia is especially aggressive and territorial, and workers will not hesitate to attack if they feel threatened. The mating season of this species takes place in autumn, so we must take this into account be aware when entering their habitats (during our climbing of Mount Misen, in Itsukushima (southern Hiroshima), we encountered several of these hornets…and they did not seem very happy to see us there!).

Mount Misen
Way to the top of Mount Misen (Itsukushima, Japana), V. mandarinia habitat. Picture by Irene Lobato Vila.

Vespa mandarinia workers often fly 1 to 2 km from their nest, but can travel up to 8 km. Thus, they will not hesitate on chasing a victim several kilometres if necessary.

Food habits

Vespa mandarinia is a very insatiable species, even more than its relative V. velutina: it preys on a wide variety of insects, including honey bees and other eusocial wasps. Moreover, it is a dominant species and it is not threatened by other organisms except by humans, so currently there are no efforts to conserve this species.

The voraciousness of the Asian giant hornet is an enormous headache for beekeepers, since a single hornet can end up with up to 40 to 50 bees. Besides, it is the only eusocial wasp to stage group attacks to beehives and other eusocial wasp nests. These attacks are divided into three phases:

  • Hunting phase: solitary workers wait near the beehive or nest and capture prays in flight. These preys are brought to their own nests to serve as food for their larvae. This phase has an unlimited duration.
  • Slaughter phase: between 2 and 50 workers gather in the beehive or wasp nest entrance, which has been previously marked with a chemical secreted by another worker. Then, a slaughter begins. In contrast to the previous phase, now hornets ignore the dead bodies of their preys. If the attack stretches on during a long time, hornets can start to starve.
  • Occupation phase: hornets become territorial and defend the hive from any possible attack. Meanwhile, some workers capture the conquered hive’s larvae to feed their descendant and their queen.

The European honeybee (Apis mellifera) has been widely imported to Japan since the Asian native honeybee (Apis cerana) is less productive. Unfortunately, the European honeybee is defenseless against V. mandarinia as it has not developed any evolutive defensive mechanism like A. cerana did.

Take a look at this video to learn more about the defensive mechanisms of the Asian honey bee, which was also commented on this post:

Sting

Females of Vespa mandarinia have a stinger about 6mm to 1cm long with which they inoculate a large amount of venom. It is precisely the volume of venom injected and not its composition that makes the Asian giant hornet especially dangerous.

Between 30 to 50 people die due to Asian hornet attacks each year in Japan, thus being the most lethal organism in this country followed by bears and venomous snakes. A single sting can require from primary medical assistance or even hospitalization, and it can cause anaphylactic reactions even in non-allergic people if the amount of venom inoculated is large enough (due to a single or multiple stings).

Warning
Warning sign in Enoshima (Kanagawa, Japan). Picture by Irene Lobato-Vila.

Has this species arrived in The West?

Vespa mandarinia has not settled in The West for now. Recently, it has been confirmed the first nest of this species found in Vancouver, Canada, which was eradicated according to sources of the Agricultural Ministry. Excepting this isolated case, there have not been new records of V. mandarinia in Western countries, so the supposed records of this species resulted from misidentifications.

Despite this, administrations are on the alert because V. mandarinia could arrive in The West like V. velutina did in 2004. For example, in Spain it was included in the Spanish catalogue of invasive species, even though it is not settled in this country, as it is considered a serious potential threat for native species as well as for apiculture.

.          .          .

Will we see V. mandarinia in The West someday? We hope no…

Main picture by Yasunori Koide, CC 3.0.

El avispón asiático gigante (Vespa mandarinia): ¿Qué sabemos sobre él?

De entre los numerosos organismos exóticos invasores que han alcanzado Europa, avispas y avispones asiáticos se encuentran dentro de los más comentados en redes sociales y foros naturalistas. El avispón asiático (Vespa velutina) se instaló en Europa y, posteriormente, en la Península Ibérica, convirtiéndose en un dolor de cabeza para apicultores y administración al tratarse de una especie especialmente voraz. Sin embargo, existe un insecto que preocupa aún más, si cabe, a los apicultores occidentales que el avispón asiático: el avispón asiático gigante (Vespa mandarinia).

¿Qué sabemos sobre esta especie? ¿Su presencia en Occidente es real o simplemente el fruto de identificaciones erróneas? Te lo contamos en este artículo.

El avispón asiático gigante (Vespa mandarinia): ¿Qué sabemos sobre él?

Durante mi último viaje a Japón el pasado mes de septiembre, me encontré cara a cara con un insecto espectacular: el avispón asiático gigante (Vespa mandarinia). Verla en directo me impresionó bastante, hecho que me motivó a escribir este post.

El avispón asiático gigante (Vespa mandarinia) es una especie de himenóptero nativa del este y sudeste de Asia especialmente abundante en las zonas rurales de Japón. Hasta hace poco tiempo, se consideraba que la variedad japonesa pertenecía a una subespecie endémica propia de este país (Vespa mandarinia japonica); sin embargo, actualmente esta clasificación no se considera válida.

Se trata del avispón (especie dentro del género Vespa, o avispones verdaderos) más grande del mundo. Las obreras miden entre 3.5 y 4.0 cm, mientras que las reinas suelen medir alrededor de 5.0 o 6.0 cm, incluso más en algunos casos puntuales, y presentar una longitud de ala a ala de entre 3.5 y 7.5 cm; un monstruo en comparación a los avispones asiáticos (Vespa velutina), que miden de 2.0 a 3.0 cm (3.5 cm las reinas).

Vespa mandarinia Natural Museum of Natural Science Tokyo
Ejemplar de Vespa mandarinia (izquierda) depositado en la exposición general del Museo Nacional de Historia Natural de Tokyo, Japón. Imagen de Irene Lobato Vila.

En Japón, de hecho, se las conoce como オオスズメバチ (oosuzumebachi), lo que puede traducirse como “avispa gorrión”.

¿Cómo lo diferenciamos de otras especies similares?

El avispón gigante asiático es fácilmente reconocible, y se diferencia de otras especies dentro del género Vespa, por su gran envergadura, presentar una cabeza completamente amarillo-anaranjada muy fácil de distinguir incluso en movimiento (la cual contrasta con el resto del cuerpo, de color más oscuro), un clípeo bien desarrollado y una cara en visión frontal muy ensanchada por los lados.

Cara Vespa mandarinia
Cara de Vespa mandarinia. Imagen modificada a partir de la original de Gary Alpert, CC 3.0.

Además, y a diferencia del avispón asiático (V. velutina), presenta las patas más oscuras (amarillas en V. velutina) y el metasoma o abdomen generalmente con rallas amarillo-anaranjadas y negras alternadas (casi negro, con el cuarto segmento amarillo, en V. velutina).

Vespa mandarinia male
Vespa mandarinia. Imagen de Yasunori Koide, CC 4.0.
Vespa velutina
Vespa velutina. Imagen de Francis ITHURBURU, CC 3.0.

El avispón gigante asiático es muy similar a nuestro avispón autóctono, el avispón europeo (en América) o simplemente avispón (Vespa crabro). Sin embargo, se diferencia fácilmente de esta especie por los rasgos mencionados anteriormente.

Comparisson Vespa
Vespa mandarinia (arriba), Vespa crabro (abajo a la izquierda), Vespa vulgaris (abajo centro) y Vespa germanica (abajo a la derecha). Imagen de @carim_nahaboo en picbear.org.

Fuera del género Vespa, tampoco debe confundirse con Megascolia maculata, frecuente en Europa y Próximo Oriente y con un tamaño de entre 2 y 4 cm.

Megascolia maculata. Imagen de gailhampshire, CC 2.0.

Comportamiento y biología

Nidificación

El avispón asiático gigante es una especie eusocial (organismo colonial y jerárquio, con formas sexuales y asexuales que conviven a la vez y con un fuerte cuidado parental) que nidifica principalmente en montañas y bosques situados a poca altura. Además, y a diferencia del resto de especies dentro del género Vespa, V. mandarinia construye sus nidos casi exclusivamente en cavidades en el suelo, raramente en edificios. Estas cavidades pueden ser excavadas por el propio avispón, proceder de espacios situados cerca de raíces putrefactas o bien tratarse de madrigueras abandonadas de roedores, serpientes u otros organismos.

En épocas de reproducción y nidificación, V. mandarinia se presenta especialmente agresiva y territorial, por lo que las obreras no dudarán en atacar en caso de sentirse amenazadas. El periodo de cópula de esta especie suele tener lugar en otoño, por lo que es en esta época cuando, en caso de adentrarnos en territorios de nidificación, debemos ir con más cuidado (durante nuestro ascenso al Monte Misen, en la isla de Itsukushima (al sur de Hiroshima), nos encontramos una buena cantidad de estos avispones…y no parecían muy contentos de vernos allí).

Mount Misen
Camino de ascenso al Monte Misen (Itsukushima, Japón), hábitat de V. mandarinia. Imagen de Irene Lobato Vila.

Las obreras suelen alejarse del nido entre 1 y 2 km, pudiendo alcanzar incluso los 8 km. No dudarán, pues, en perseguir a una posible amenaza diversos quilómetros en caso de ser necesario.

Alimentación

Vespa mandarinia es muy voraz, más incluso que su pariente V. velutina: se alimenta de otros insectos, entre ellos de abejas melíferas. Es, además, una especie dominante en los hábitats en los que se encuentra, por lo que casi no presenta amenazas (salvo el propio ser humano) y actualmente no se teme por su estado de conservación.

Su voracidad es la que la convierte en una especie especialmente problemática para la apicultura, pues un solo avispón puede acabar tranquilamente con 40 o 50 abejas en un minuto. Además, es la única avispa eusocial que realiza ataques grupales contra colmenas de abejas y otros nidos de avispas. Estos ataques suelen dividirse en tres fases:

  • Fase de caza: obreras solitarias esperan fuera de la colmena o nido y capturan a sus presas al vuelo. Las presas son llevadas por el avispón a su nido para alimentar a las larvas. Fase de durabilidad indefinida.
  • Fase de “matanza”: entre 2 y 50 avispones se reúnen en una colmena o nido previamente marcado químicamente por una obrera, e inician una matanza masiva de abejas o avispas. A diferencia de la fase anterior, en ésta los avispones ignoran los cadáveres de las presas, que se van acumulando. Raras veces se producen bajas en las filas de los avispones, pero si sus ataques se prolongan mucho en el tiempo es posible que mueran exhaustas o de hambre.
  • Fase de ocupación: los avispones pasan a defender la colmena o nido “conquistado”, del cual capturan las larvas para dar de comer a su propia progenie y a la reina. Durante la ocupación, los avispones pasan a ser muy territoriales y agresivos.

La abeja melífera europea (Apis mellifera) ha sido ampliamente importada a Japón debido a que su especie de abeja melífera nativa (Apis cerana) no es tan productiva. Desgraciadamente, la abeja melífera europea se encuentra indefensa ante V. mandarinia al no haber desarrollado ningún sistema defensivo contra este voraz depredador, cosa que sí ha hecho A. cerana.

Si no, mirad este vídeo, el cual ya comentamos en este post:

Picadura

Las hembras de Vespa mandarinia presentan un aguijón de entre 6mm y 1cm con el que pueden inyectar una gran cantidad de veneno. Y es precisamente la cantidad inyectada de veneno y no tanto su composición lo que las hace especialmente peligrosas.

Anualmente, entre 30 y 50 personas mueren por picaduras de esta especie en Japón, convirtiéndose en el organismo más mortífero de este país seguido de osos y serpientes venenosas. Una simple picadura puede requerir de atención médica primaria u hospitalización, e incluso en personas no alérgicas puede llegar a causar choques anafilácticos o fallos sistémicos si la dosis de veneno inyectada (resultado de una única picadura o por la suma de varias al mismo tiempo) es suficientemente elevada.

Warning
Señalización para alertar sobre la presencia de V. mandarinia en Enoshima (Kanagawa, Japón). Imagen de Irene Lobato-Vila.

¿Se encuentra actualmente en Occidente?

Vespa mandarinia NO se encuentra en Occidente. Recientemente se confirmó el hallazgo de un único nido de esta especie en la isla de Vancouver, Canadá, el cual fue erradicado según fuentes del Ministerio de Agricultura. Salvo este caso aislado, hoy en día no se han registrado más avistamientos del avispón gigante asiático en Occidente, por lo que todas las supuestas citas de esta especie han sido fruto de identificaciones erróneas.

A pesar de esto, las administraciones se encuentran en alerta, pues de la misma manera que V. velutina se introdujo en Europa en 2004, también podría hacerlo V. mandarinia. Debido a su potencial colonizador y por constituir una amenaza grave para las especies autóctonas y la producción apícola, esta especie fue incluida en el Catálogo Español de Especies exóticas Invasoras a pesar de no encontrarse aún (y esperemos que nunca) en la Península Ibérica.

.          .          .

¿Veremos alguna vez a V. mandarinia en Occidente? Esperemos que no…

Imagen de portada propiedad de Yasunori Koide, CC 3.0.

La vespa asiàtica gegant (Vespa mandarinia): què en sabem?

D’entre els nombrosos organismes exòtics invasors que han arribat a Europa, les vespes asiàtiques es troben dins dels més comentats en xarxes socials i fòrums naturalistes. La vespa asiàtica (Vespa velutina) es va instal·lar a Europa i, posteriorment, a la Península Ibèrica, esdevenint un mal de cap per apicultors i administració en tractar-se d’una espècie molt voraç. Tanmateix, existeix un insecte que preocupa els apicultors occidentals fins i tot més que la vespa asiàtica: la vespa asiàtica gegant (Vespa mandarinia).

Què en sabem, d’aquesta espècie? La seva presència a Occident és real o tan sols el fruit d’identificacions errònies? T’ho expliquem en aquest post.

La vespa asiàtica gegant (Vespa mandarinia): què en sabem?

Durant el meu darrer viatge al Japó el passat mes de setembre, vaig trobar-me cara a cara amb un insecte espectacular: la vespa asiàtica gegant (Vespa mandarinia). Veure-la en directe em va impressionar fins el punt de motivar-me a escriure aquest post.

La vespa asiàtica gegant (Vespa mandarinia) és una espècie d’himenòpter nativa de l’est i sud-est d’Àsia especialment abundant a les zones rurals del Japó. Fins fa poc temps, es considerava que la varietat japonesa pertanyia a una subespècie endèmica pròpia d’aquest país (Vespa mandarinia japonica); aquesta classificació, però, actualment no es considera vàlida.

Es tracta de la vespa (espècie dins del gènere Vespa) més gran del món. Les obreres mesuren entre 3.5 i 4.0 cm, mentre que les reines solen mesurar al voltant de 5.0 o 6.0 cm, fins i tot més en alguns casos puntuals, i presentar una longitud d’ala a ala d’entre 3.5 i 7.5 cm; un monstre en comparació a les vespes asiàtiques (Vespa velutina), que mesuren d’entre 2.0 a 3.0 cm (3.5 cm les reines).

Vespa mandarinia Natural Museum of Natural Science Tokyo
Exemplar de Vespa mandarinia (esquerra) dipositada a l’exposició general del Museu Nacional d’Història Natural de Tokyo, Japó. Imatge de Irene Lobato Vila.

Al Japó, de fet, se les coneix com a オオスズメバチ (oosuzumebachi), el que pot traduir-se com “vespa pardal”.

Com les diferenciem d’altres espècies similars?

La vespa gegant asiàtica és fàcilment recognoscible, i es diferencia d’altres espècies dins del gènere Vespa, per la seva gran mida, presentar un cap completament groc-ataronjat molt fàcil de distingir fins i tot en moviment (el qual contrasta amb la resta del cos, de color més fosc), un clipi ben desenvolupat i una cara en visió frontal molt eixamplada pels costats.

Cara de Vespa mandarinia. Imatge modificada a partir de la original de Gary Alpert, CC 3.0.

A més a més, i a diferència de la vespa asiàtica (V. velutina), presenta les potes més fosques (grogues en V. velutina) i el metasoma o abdomen generalment amb ratlles groc-ataronjades i negres alternades (gairebé negre, amb el quart segment groc, en V. velutina).

Vespa mandarinia male
Vespa mandarinia. Imatge de Yasunori Koide, CC 4.0.
Vespa velutina
Vespa velutina. Imatge de Francis ITHURBURU, CC 3.0.

La vespa asiàtica gegant és molt semblant a la nostra vespa terrera, carnissera o xana (Vespa crabro), present a Europa i introduïda a Amèrica. Tanmateix, es diferencia fàcilment d’aquesta espècie pels trets mencionats anteriorment.

Comparisson Vespa
Vespa mandarinia (adalt), Vespa crabro (abaix a l’esquerra), Vespa vulgaris (abaix al centre) i Vespa germanica (abaix a la dreta). Imatge de @carim_nahaboo a picbear.org.

Al marge del gènere Vespa, tampoc l’hem de confondre amb Megascolia maculata, freqüent a Europa i Pròxim Orient i amb una mida d’entre 2 i 4 cm.

Megascolia maculata. Imatge de gailhampshire, CC 2.0.

Comportament i biologia

Nidificació

La vespa asiàtica gegant és una espècie eusocial (organisme colonial i jeràrquic, amb formes sexuals i asexuals que conviuen alhora i amb una forta cura parental) que nidifica principalment en muntanyes i boscos situats a poca alçada. A més a més, i a diferència de la resta d’espècies dins del gènere Vespa, V. mandarinia construeix els seus nius gairebé exclusivament en cavitats sota terra, rarament en edificis. Aquestes cavitats poden ser excavades per la pròpia vespa, procedir d’espais situats a prop d’arrels putrefactes o bé tractar-se de caus abandonats de rosegadors, serps o altres organismes.

En èpoques de reproducció i nidificació, V. mandarinia es presenta especialment agressiva i territorial, de manera que les obreres no dubtaran a atacar en cas de sentir-se amenaçades. El període de còpula d’aquesta espècie sol tenir lloc a la tardor, de manera que és en aquesta època quan, en cas d’endinsar-nos en territoris de nidificació, hem d’anar amb més cura (durant el nostre ascens al Misen, a l’illa d’Itsukushima (al sud d’Hiroshima), vam trobar una bona quantitat d’aquests vespes… i no semblaven pas gaire contentes de veure’ns allà).

Mount Misen
Camí d’ascens al Misen (Itsukushima, Japó), hàbitat de V. mandarinia. Imatge de Irene Lobato Vila.

Les obreres solen allunyar-se del niu entre 1 i 2 km, podent arribar fins i tot als 8 km. No dubtaran, doncs, en perseguir una possible amenaça diversos quilòmetres en cas de ser necessari.

Alimentació

Vespa mandarinia és molt voraç, més fins i tot que la seva parent V. velutina: s’alimenta d’altres insectes, entre els quals abelles mel·líferes. És, d’altra banda, una espècie dominant en els hàbitats en què es troba, de manera que gairebé no presenta amenaces (excepte el propi ésser humà) i actualment no es tem pel seu estat de conservació.

La seva voracitat és la que la converteix en una espècie especialment problemàtica per a l’apicultura, ja que una sola vespa pot acabar tranquil·lament amb 40 o 50 abelles en un minut. A més a més, és l’única vespa eusocial que realitza atacs grupals contra ruscs d’abelles i altres nius de vespes. Aquests atacs solen dividir-se en tres fases:

  • Fase de caça: obreres solitàries esperen fora del rusc o niu i capturen les preses al vol, les quals són portades per la vespa al seu niu per alimentar les seves pròpies larves. Fase de durabilitat indefinida.
  • Fase de “matança”: entre 2 i 50 vespes es reuneixen davant d’un rusc o niu prèviament marcat químicament per una obrera, i inicien una matança massiva d’abelles o vespes. A diferència de la fase anterior, en aquesta les vespes ignoren els cadàvers de les preses, que es van acumulant. Rarament es produeixen baixes en les files de les vespes, però si els atacs es perllonguen molt en el temps és possible que morin exhaustes o bé de fam.
  • Fase d’ocupació: les vespes passen a defensar el rusc o niu “conquerit”, del qual en capturen les larves per donar de menjar a la seva pròpia progènie i a la reina. Durant l’ocupació, les  vespes passen a ser molt territorials i agressives.

L’abella de la mel europea (Apis mellifera) ha estat àmpliament importada al Japó degut a què la seva espècie nativa (Apis cerana) no és tan productiva. Malauradament, l’abella de la mel europea es troba indefensa davant V. mandarinia en no haver desenvolupat cap sistema defensiu contra aquest voraç depredador, cosa que sí ha fet A. cerana.

Si no, mireu aquest vídeo, el qual ja vam comentar en aquest post:

Picada

Les femelles de V. mandarinia presenten un fibló d’entre 6 mm i 1 cm amb el qual poden injectar una gran quantitat de verí. I és precisament la quantitat injectada de verí i no tant la seva composició el que les fa especialment perilloses.

Anualment, entre 30 i 50 persones moren per picades d’aquesta espècie al Japó, convertint-se en l’organisme més mortífer d’aquest país seguit d’óssos i serps verinoses. Una sola picada pot requerir d’atenció mèdica primària o d’hospitalització, i fins i tot en persones no al·lèrgiques pot arribar a causar xocs anafilàctics si la dosi de verí injectada (resultat d’una única picada o per la suma d’unes quantes) és prou elevada.

Warning
Senyal per alertar sobre la presència de V. mandarinia a Enoshima (Kanagawa, Japó). Imatge de Irene Lobato-Vila.

Es troba actualment a Occident?

Vespa mandarinia NO es troba a Occident. Recentment es va confirmar la troballa d’un únic niu d’aquesta espècie a l’illa de Vancouver, Canadà, el qual va ser eradicat segons fonts del Ministeri d’Agricultura. Llevat d’aquest cas aïllat, avui dia no s’han registrat més albiraments de la vespa asiàtica gegant a Occident, de manera que totes les suposades cites d’aquesta espècie han estat fruit d’identificacions errònies.

Malgrat això, les administracions es troben en alerta, ja que de la mateixa manera que V. velutina es va introduir a Europa el 2004, també podria fer-ho V. mandarinia. A causa del seu potencial colonitzador i pel fet de constituir una amenaça greu per a les espècies autòctones i la producció apícola, aquesta espècie va ser inclosa en el Catàleg espanyol d’espècies exòtiques invasores tot i no trobar-se encara (i esperem que mai) a la Península Ibèrica.

.          .          .

Veurem algun cop V. mandarinia a Occident? Esperem que no…

Imatge de portada de Yasunori Koide, CC 3.0.

Transponable elements: the jumping genes of our genome

In the same way that grasshoppers are jumping and moving through the field, there is a type of genes that jump through our genome and change its position. Our genome is not static, so read on to know everything about these kinds of genes.

THE DISCOVERY OF TRANSPONABLE ELEMENTS

Barbara McClintock discovered transposable elements, or also called mobile genetic elements because of their ability to move around the genome. The “jumping genes,” as this American geneticist christened them, changed the knowledge about genetics so far, since at first the scientific community did not believe in the idea that a DNA sequence could move on its own.

She had a special relationship with corn, a plant domesticated by man for 10,000 years and has become one of the three most cultivated cereals in the world. In addition, it is one of the most important staple foods since from it many derived products are made, such as flours and oils. Its great industrial value has made it have been studied in depth and its genome has been sequenced.

McClintock began studying the DNA of corn and observed that there were a number of genetic sequences that, without knowing how, changed position within the genome. Somehow, these sequences turned on or off the expression of other corn genes and this was observed with the naked eye; the grains of a corn cob could be of different colours (Figure 1), even within the same grain there were areas of various colours. Then McClintock sought the answer of how this was possible if the genes responsible for colour were inherited from the parents. The result was the discovery of the transposable elements, which led her to win the Nobel Prize in Medicine in 1983.

elemento transponible maiz
Figure 1. (A) P gene gives a purple grain. (B) A transponable element is inserted in the middle of the P gen and the grain has no pigmentation. (C) Corn cob wit some grains with P gene intact and others with P gene interrupted by a mobile genetic element. (Source: Porque biotecnología, adaptation)

EFFECTS OF THE CHANGE OF POSITION

When the transposable elements jump and change position they produce a loss of bases when leaving the place where they rested. This loss of some bases does not have “much” importance. But if the transposable element is inserted into a gene, there is an addition of a large number of bases that will cause the loose of gene’s function. For this reason, mobile genetic elements produce mutations because by jumping and changing their location, they alter the DNA sequence and prevent genes from encoding proteins through the genetic code. However, when they jump again, the gene regains its functionality and expresses itself as if nothing had happened.

Often, these jumping genes are considered parasites, because the cell cannot get rid of them. Although they can also bring benefits to the cell, such as transporting advantageous genes. The best known example is not found in humans, but in bacteria and their resistance to antibiotics such as penicillin, discovered by Alexander Fleming. The spread of antibiotic resistance is due to genes that encode enzymes that inactivate them, and that are located in mobile genetic elements. It is usually related to the horizontal transfer of genes, in which they can move from one cell to another as if they were bees that go from flower to flower. When this happens, the transposable element is introduced into a new cell and inserted into the genome of this new cell. That is when it will be faithfully transmitted to its progeny through the normal process of DNA replication and cell division.

TYPES OF TRANSPONABLE ELEMENTS

It is estimated that in the human genome there are 44% transposable elements, which can amount to 66% taking into account repeated fragments and short sequences derived from them. The consequence is that we have more than 1000 genes regulated, directly or indirectly, by sequences from transposable elements.

So far, two types of transposable elements are known: class I transposable elements or retrotransposons and class II transposable elements or DNA transposons. They are classified according to whether they require reverse transcription to jump and transpose or not.

Reverse transcription is similar to the transcription process, but with the difference that it occurs in reverse. That is, if in the classical transcription process a single strand of RNA is obtained from a double strand of DNA, in reverse transcription of an RNA molecule a DNA molecule is obtained. This is common in viruses such as HIV virus (AIDS) or hepatitis virus, but also in some class I transposable elements. These are very abundant and represent 90% of the transposable elements of our genome.

Instead, the others are class II transposable elements or DNA transposons. These are the elements that McClintock discovered in corn, with a 10% representation in our genome and responsible for the spread of antibiotic resistance in bacterial strains.

It should be noted that DNA transposons never use intermediaries, but are autonomous. They jump from one place of the genome to another by themselves, without any help. The mechanism they use is called “cut and paste” and is similar to the cut and paste we use on the computer. The DNA transposon cuts the DNA sequence that has end and look for another place to settle. Then there it also cuts the DNA sequence and is “hooked” (Figure 2).

transposon
Figure 2. Mechanism of cutting and pasting (Source: SITN: science in the news)

It is currently known that the activity of transposable elements is a source of evolutionary innovation due to the generation of mutations, which could have been key both in the development of organisms and in different evolutionary phenomena such as speciation; the process by which a population of a given species gives rise to another or other species.

The vast majority of these mutations are deleterious to organisms, but some of them will lead to adaptive improvement and tend to spread throughout the population. We could put our hand in the fire and we probably wouldn’t burn to ensure that much of the variability that life shows around us originally comes from the displacement of mobile genetic elements or transposable elements.

(Main picture: ABC Canada)