Arxiu de la categoria: General

The reality of mutations

Do you remember the ninja turtles? Leonardo, Raphael, Michelangelo and Donatello were four turtles that suffered a mutation when they were bathed with a radioactive liquid. Fortunately or unfortunately, a mutation cannot turn us into ninja turtles, but it can have other effects. Next, I tell you what mutations are.

WHAT ARE MUTATIONS?

Our body is like a great factory in which our cells are the workers. These, thanks to their internal machinery, make the factory stay afloat with the least possible problems. The constant operation of our cells (24/7), sometimes causes errors in their machinery. This generates imperfections in the genetic code, which generally go unnoticed. It is true that cells do everything possible to fix the failures produced, but sometimes they are inevitable and lead to the generation of diseases or even to the death of the cell.

Mutations are these small errors, it means, mutations are stable and inheritable changes that alter the DNA sequence. This fact introduces new genetic variants in the population, generating genetic diversity.

Generally, mutations tend to be eliminated, but occasionally some can succeed and escape the DNA repair mechanisms of our cells. However, they only remain stable and inheritable in the DNA if they affect a cell type, the germ cells.

The organisms that reproduce sexually have two types of cells: germinal and somatic. While the former transmit genetic information from parents to children, somatic cells form the body of the organism. Because the information of germ cells, which are what will give rise to gametes (sperm and oocytes) passed from generation to generation, they must be protected against different genetic changes to safeguard each individual.

Most mutations are harmful, species cannot allow the accumulation of large number of mutations in their germ cells. For this reason not all mutations are fixed in the population, and many of these variants are usually eliminated. Occasionally some may be incorporated into all individuals of the species.

The mutation rate is the frequency at which new mutations occur in a gene. Each specie has a mutation rate of its own, modulated by natural selection. This implies that each species can be confronted differently from the changes produced by the environment.

Spontaneous mutation rates are very low, in the order of 10-5-10-6 per gene and generation. In this way, mutations do not produce rapid changes in the population.

THE ROLE OF NATURAL SELECTION

Changes of nucleotides in somatic cells can give rise to variant or mutant cells, some of which, through natural selection, get more advantageous with respect to their partners and proliferate very fast, giving us as a result, in the extreme case, cancer, that is, uncontrolled cell proliferation. Some of the cells in the body begin to divide without stopping and spread to surrounding tissues, a process known as metastasis

But the best way to understand the role of natural selection of which the naturist Charles Darwin spoke is with the example of spotted moths (Biston betularia). In England there are two types of moths, those of white colour and those of black colour (Figure 1). The former used to be the most common, but between 1848 and 1898 black moths were imposed.

biston
Figure 1. Biston betularia, white and black moths (Source: TorruBlog)

This change occurred at the same time that cities became more industrial, in which coal became the main fuel for power plants. The soot of this rock dyed the sky, the soil and the buildings of the cities black. Tree trunks were also affected, where the moths were camouflaged.

The consequence of this fact was that white moths could not hide from their predators, whereas those that were black found a successful exit camouflaging well on the tinted trunks. With the change of colour of their hiding place they had more opportunities to survive and reproduce (Video 1).

Video 1. Industrial melanism, white and black moth (Source: YouTube)

This is a clear example of how changes in the environment influence the variability of gene frequencies, which vary in response to new factors in the environment.

TYPES OF MUTATIONS

There is no single type of mutation, but there are several types of mutation that can affect the DNA sequence and, rebound, the genetic code. However, not all mutations have the same effect.

There are many and different types of mutations, which are classified by mutational levels. These levels are based on the amount of hereditary material affected by the mutation and go up in rank according to the number of genes involved. If the mutation affects only one gene we speak of gene mutation, whereas if it affects a chromosomal segment that includes several genes we refer to chromosomal mutation. When the mutation affects the genome, affecting whole chromosomes by excess or by defect, we speak of genomic mutation.

An example of a point mutation is found in cystic fibrosis, a hereditary genetic disease that produces an alteration in the secretion of mucus, affecting the respiratory and digestive systems. A point mutation affects the gene that codes for the CFTR protein. The affected people receive from both parents the defective gene, which, having no copy of the good gene, the protein will not be functional. The result is that the secretions produced by the human body are thicker than usual, producing an accumulation in the respiratory tract.

REFERENCES

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Bioinformática UAB
  • Webs UCM
  • Main picture: Cine Premiere

MireiaRamos-angles2

Anuncis

La realidad de las mutaciones

¿Recordáis las tortugas ninja? Leonardo, Raphael, Michelangelo y Donatello eran cuatro tortugas que sufrieron una mutación al ser bañadas con un líquido radioactivo. Por suerte o por desgracia, una mutación no nos puede convertir en tortugas ninja, pero sí que puede tener otros efectos. A continuación, os cuento qué son las mutaciones.

¿QUÉ SON LAS MUTACIONES?

Nuestro cuerpo es como una gran fábrica en la que nuestras células son los trabajadores. Éstas, gracias a su maquinaria interna, hacen que la fábrica se mantenga a flote con los menores problemas posibles. El funcionamiento constante de nuestras células las 24 horas del día durante los 365 días del año, causa que, a veces, se produzcan errores en su maquinaria. Esto genera imperfecciones en el código genético, las cuales generalmente pasan desapercibidas. Sí que es cierto que las células hacen todo lo posible para arreglar los fallos producidos, pero a veces son inevitables y conducen a la generación de enfermedades o, incluso, a la muerte de la célula si ésta se ve desbordada y no puede superar las adversidades.

Así pues, las mutaciones son estos pequeños errores, es decir, las mutaciones son cambios estables y heredables que alteran la secuencia del ADN. Este hecho hace que se introduzcan nuevas variantes genéticas en la población, generando diversidad genética.

Generalmente, las mutaciones acostumbran a ser eliminadas, pero ocasionalmente algunas pueden tener éxito y escaparse de los mecanismos de reparación del ADN de nuestras células. Sin embargo, sólo se mantienen estables y heredables en el ADN si afectan a un tipo de células, las células germinales.

Los organismos que nos reproducimos sexualmente tenemos dos tipos de células: germinales y somáticas. Mientras que las primeras transmiten la información genética de padres a hijos, las células somáticas forman el cuerpo del organismo. Debido a que la información de las células germinales, que son las que darán lugar a gametos (espermatozoides y ovocitos) pasa de generación a generación, éstas tienen que estar protegidas contra los diferentes cambios genéticos para poder salvaguardar cada individuo.

Debido a que la mayoría de las mutaciones son perjudiciales, ninguna especie puede permitir que se acumulen mutaciones en gran número en sus células germinales. Es por este motivo que no todas las mutaciones quedan fijadas en la población, sino que muchas de estas variantes suelen ser eliminadas. Ocasionalmente algunas sí que se pueden incorporar a todos los individuos de la especie.

La tasa de mutación es la frecuencia en la que se producen nuevas mutaciones en un gen. Cada especie tiene una tasa de mutación propia, modulada por la selección natural. Esto implica que cada especie se pueda enfrontar de manera distinta a los cambios producidos por el ambiente.

Las tasas de mutación espontaneas son muy bajas, del orden de     10-5-10-6 por gen y generación. De esta manera, las mutaciones no producen cambios rápidos en la población.

EL PAPEL DE LA SELECCIÓN NATURAL

Cambios de nucleótidos en las células somáticas pueden dar lugar a células variantes o mutantes, algunas de las cuales, a través de la selección natural, consiguen ser más ventajosas respecto a sus compañeras y proliferan muy rápido, dándonos como resultado, en el caso extremo, el cáncer, es decir, una proliferación celular descontrolada. Algunas de las células del cuerpo empiezan a dividirse sin detenerse y se diseminan a los tejidos de alrededor, proceso conocido como metástasis

Pero la mejor manera de entender el papel de la selección natural de la cuál hablaba el naturista Charles Darwin es con el ejemplo de las polillas moteadas (Biston betularia). En Inglaterra habitan dos tipos de polillas, las de color gris claro y las de color gris oscuro (Figura 1). Las primeras solían ser las más comunes, pero entre los años 1848 y 1898 se impusieron las polillas de color gris.

biston
Figura 1. Polillas moteadas (Biston betularia) de color gris clar y oscuro (Fuente: TorruBlog)

Este cambio se produjo al mismo tiempo que las ciudades se volvieron más industriales, en las cuales el carbón se convirtió en el combustible principal para las plantas eléctricas. El hollín de esta roca tiñó de gris oscuro el cielo, el suelo y los edificios de las ciudades. También se vieron afectados los troncos de los árboles, donde se camuflaban las polillas.

La consecuencia de este hecho fue que las polillas de color gris claro no podían esconderse de sus depredadores, en cambio, las que eran de color gris oscuro encontraron una salida exitosa camuflándose bien en los troncos tintados. Con el cambio de color de su escondite tenían más oportunidades de sobrevivir y reproducirse (Video 1).

Video 1. Polillas moteadas y la industrialización (en inglés) (Fuente: YouTube)

Este es un ejemplo claro de cómo los cambios del entorno influyen en la variabilidad de las frecuencias génicas, que varían en respuesta a nuevos factores en el medio ambiente.

TIPOS DE MUTACIONES

No existe un solo tipo de mutación, sino que hay varios tipos de mutación que pueden afectar la secuencia de ADN y, de rebote, el código genético. Sin embargo, no todas las mutaciones tienen el mismo efecto.

De mutaciones hay muchas y de diferentes tipos, que se clasifican por niveles mutacionales. Estos niveles se basan en la cantidad de material hereditario afectado por la mutación y van subiendo de rango según el número de genes implicados. Si la mutación sólo afecta a un gen hablamos de mutación génica, mientras que si afecta a un segmento cromosómico que incluye varios genes nos referimos a mutación cromosómica. Cuando la mutación afecta al genoma, afectando a cromosomas completos por exceso o por defecto, hablamos de mutación genómica.

Un ejemplo de mutación puntual lo encontramos en la fibrosis quística, una enfermedad genética hereditaria que produce una alteración en la secreción de mucosidades, afectando al sistema respiratorio y digestivo. Una mutación puntual afecta el gen que codifica para la proteína CFTR. Las personas afectadas reciben de ambos progenitores el gen defectuoso que, al no tener ninguna copia del gen buena, la proteína no será funcional. El resultado es que las secreciones producidas por el cuerpo humano son más espesas de lo habitual, produciendo una acumulación en las vías respiratorias.

REFERENCIAS

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Bioinformática UAB
  • Webs UCM
  • Foto portada: Cine Premiere

MireiaRamos-castella2

La realitat de les mutacions

Recordeu les tortugues ninja? En Leonardo, Raphael, Michelangelo i Donatello eren quatre tortugues que van patir una mutació al ser banyades amb un líquid radioactiu. Per sort o per desgràcia, una mutació no ens pot convertir en tortugues ninja, però sí que pot tenir altres efectes. A continuació us explico què són les mutacions.

QUÈ SÓN LES MUTACIONS?

El nostre cos és com una gran fàbrica en la que les nostres cèl·lules són els treballadors. Aquestes, gràcies a la seva maquinària interna, fan que la fàbrica segueixi endavant amb els menors problemes possibles. El funcionament constant de les nostres cèl·lules les 24 hores del dia durant els 365 dies de l’any, provoca que, a vegades, es produeixin errors en la seva maquinària. Això genera imperfeccions en el codi genètic, les quals generalment passen desapercebudes. Sí que és cert que les cèl·lules fan tot el possible per arreglar els errors produïts, però a vegades són inevitables i condueixen a la generació de malalties o, inclús, a la mort de la cèl·lula si aquesta es veu desbordada i no pot superar les adversitats.

Així doncs, les mutacions són aquests petits errors, és a dir, canvis estables i heretables que alteren la seqüència de l’ADN. Aquest fet fa que s’introdueixin noves variants gèniques a la població, generant diversitat genètica.

Generalment, les mutacions acostumen a ser eliminades, però ocasionalment algunes poden tenir èxit i escapar-se dels mecanismes de reparació de l’ADN de les nostres cèl·lules. No obstant, només es mantenen estables i heretables en l’ADN si afecten a un tipus de cèl·lules, les cèl·lules germinals.

Els organismes que ens reproduïm sexualment tenim dos tipus de cèl·lules: germinals i somàtiques. Mentre que les primeres transmeten la informació genètica de pares a fills, les cèl·lules somàtiques formen el cos de l’organisme. Degut a que la informació de les cèl·lules germinals, que són les que donen lloc a gàmetes (espermatozoides i oòcits) passa de generació en generació, aquestes han d’estar protegides contra els diferents canvis genètics per poder salvaguardar cada individu.

Degut a que la majoria de les mutacions són perjudicials, cap espècie pot permetre que s’acumulin mutacions en gran número en les seves cèl·lules germinals. És per això que no totes les mutacions queden fixades a la població, sinó que moltes d’aquestes variants solen ser eliminades. Ocasionalment algunes sí que es poden incorporar a tots els individus de l’espècie.

La taxa de mutació és la freqüència en la que es produeixen noves mutacions en un gen. Cada espècie té una taxa de mutació pròpia, modulada per la selecció natural. Això implica que cada espècie es pot enfrontar diferent als canvis produïts per l’ambient.

Les taxes de mutació espontànies són molt baixes, de l’ordre de 10-5-10-6 per gen i generació. D’aquesta manera, les mutacions no produeixen canvis ràpids en la població.

EL PAPER DE LA SELECCIÓ NATURAL

Canvis de nucleòtids en les cèl·lules somàtiques poden donar lloc a cèl·lules variants o mutants, algunes de les quals, a través a de la selecció natural, aconsegueixen ser més avantatjoses respecte a les seves companyes i proliferen molt ràpid. Com a resultat, en el cas extrem, es produeix el càncer, és a dir, una proliferació cel·lular descontrolada. Algunes de les cèl·lules del cos comencen a dividir-se sense aturar-se i es disseminen als teixits del voltant, procés conegut com a metàstasi.

Però la millor manera d’entendre el paper de la selecció natural de la qual en parlava el naturista Charles Darwin és amb l’exemple de les papallones del bedoll (Biston betularia). A Anglaterra habiten dos tipus de papallones, les de color gris clar i les de color gris fosc (Figura 1). Les primeres acostumaven a ser les més comuns, però entre els anys 1848 i 1898 es van invertir els papers i les papallones de color gris es van imposar.

biston
Figura 1. Papallones del bedoll (Biston betularia) de color gris clar i gris fosc (Font: TorruBlog)

Aquest canvi es va produir al mateix temps que les ciutats es van tornar més industrials, en les quals el carbó es va convertir en el combustible principal per a les plantes elèctriques. El sutge d’aquesta roca va tenyir de gris fosc el cel, el sòl i els edificis de les ciutats. També es van veure afectats els troncs dels arbres, on es camuflaven les papallones del bedoll.

La conseqüència d’aquest fet va ser que les papallones de color gris clar no podien amagar-se dels seus depredadors, en canvi, les que eren de color gris fosc van trobar una sortida amb èxit camuflant-se bé en els troncs pintats. Amb el canvi de color del seu amagatall tenien més oportunitats de sobreviure i reproduir-se (Vídeo 1).

Vídeo 1. Papallones del bedoll i la industrialització (en anglès) (Font: YouTube)

Aquest és un exemple clar de com els canvis en l’entorn influeixen en la variabilitat de les freqüències gèniques, que varien en resposta a nous factors en el medi ambient.

TIPUS DE MUTACIONS

No existeix un sol tipus de mutació, sinó que hi ha varis tipus de mutacions que poden afecta la seqüència d’ADN i conseqüentment el codi genètic. No obstant, no totes les mutacions tenen el mateix efecte.

Les mutacions acostumen a classificar-se per nivells mutacionals. Aquests nivells es basen en la quantitat de material hereditari afectat per la mutació i van pujant de rang segons el número de gens implicats. Si la mutació només afecta a un gen parlem de mutació gènica, mentre que si afecta a un segment cromosòmic que inclou varis gens ens referim a mutació cromosòmica. Quan la mutació afecta al genoma, afectant a cromosomes complets per excés o per defecte, ens referim a mutació genòmica.

Un exemple de mutació puntual el trobem en la fibrosi quística, una malaltia genètica hereditària que produeix una alteració en la secreció de mucositats, afectant al sistema respiratori i digestiu. Una mutació puntual afecta el gen que codifica per a la proteïna CFTR. Les persones afectades reben de tots dos progenitors el gen defectuós que, al no tenir cap còpia del gen bona, la proteïna no serà funcional. El resultat és que les secrecions produïdes per l’organisme humà són més espesses del que és habitual, produint una acumulació en les vies respiratòries.

REFERÈNCIES

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Bioinformática UAB
  • Webs UCM
  • Foto portada: Cine Premiere

MireiaRamos-catala2

How do cetaceans communicate?

We cannot imagine our lives without communication, but we are not the only animal species that use communication as a way to exchange information. In this post, we are explaining how cetacean’s communication is.

HOW DO CETACEANS COMMUNICATE?

Given that there are highly social species among cetaceans, it is essential to understand the role that communication plays in regulating social interactions in these species. When we think of communication, we usually tend to associate it with acoustic communication, and, in fact, this is the major way for cetaceans; but other types exists, such as chemical, visual or tactile communication.

ACOUSTIC COMMUNICATION: THE MOST DEVELOPED

Acoustic communication is the most important way of communication in cetaceans and the reason is that sound transmission in the water is very fast. It includes both vocal and non-vocal signaling. In some species, it can be very complex, since some of them have dialects.

Because of the fact cetaceans rely on sound, some activities such as seismic surveys may interfere in their behaviour and threaten their survival.

NON-VOCAL COMMUNICATION

Non-vocal communication consists of producing sounds without using the vocal apparatus, like using flukes or flippers to strike the water surface, jaw claps, teeth gnashing or bubble emissions. By slapping their tails, cetaceans convey a threat or distress.

Breaching is the typical behaviour of most cetaceans in which they leap vigorously into the air. The originated sound may travel several kilometres and it is thought to be a spacing mechanism, to keep acoustic contact or to inform about sexual stimulation, location of food or a response to injury or irritation. It can also be a manner to remove parasites and dead skin. More studies about the purpose of breaching are needed.

VOCAL COMMUNICATION IS VERY COMPLEX IN CETACEANS

Considering vocal communication, odontocetes and mysticetes  are very different. For this reason, we are explaining it separately.

MYSTICETES

Sounds of baleen whales have a social function, such as contact when in long distances, assembly calls, sexual advertisement, greeting, spacing, threat and individual identification. It is probable that they use sound as a way to synchronise biological or behavioural activities, such as feeding or breeding. You can read more about communication in baleen whales here.

Scientists agree there are three (plus one) types of sound in mysticetes:

  • Low-frequency moans (1-30 seconds, 20-200Hz). These sounds can be pure tones, such as in the case of fin whales (Balaenoptera physalus), or complex sounds with harmonic structure. These sounds are used in communication at long distances. For example, 20Hz moans of humpack whales (Megaptera novaeangliae) can pass through most obstacles and travel hundreds of kilometres to reach conspecifics for signaling. It has been suggested that, without obstacles, these kind of sounds can travel from pole to pole. Amazing, isn’t it? You can hear the call of the fin whale here.
fin whale, rorqual comun, balaenoptera physalus, circe, whale communication, cetacean communication, comunicacion ballenas, comunicacion cetaceos
Fin whale (Balaenoptera physalus) (Picture: Circe).
  • Short thumps or knocks (< 1 second, < 200Hz). These sounds are known to be produced by right whales (Eubalaena sp), bowhead whale (Balaena mysticetus), gray whales (Eschrichtius robustus), fin whales and minke whales (Balaenoptera acutorostrata).  These sounds are related to social context and activity.  You can here the call of the gray whale here.
  • Chirps and whistles (>1kHz, <0.1 seconds). These sounds are produced by most baleen whales. 
  • Humpback whale songs. You can here some songs of humpback whales here:

ODONTOCETES

According to scientist, odontocete sounds can be divided into two categories:

  • Pulsed sounds. All toothed cetaceans produces this type of sounds and can be used for echolocation (the production of high-frequency sound waves and reception of echoes to locate objects and investigate the surrounding environment) or communication. echolocation, dolphin, ecolocalizacion, delfines, comunicacion odontocetos, odontocete communicationEcholocation in dolphins.

They can be subdivided into two types:

  • Pulse or click trains (clicks). Click trains consist of sequences of acoustic pulses (50μsec, 5-150kHz) repeated over time. They are related to echolocation. Species can have a broad spectral composition, such as in the bottlenose dolphins (Tursiops truncatus), or have a narrow-band composition, as in narwhals (Monodon monoceros). In this type of pulsed sound, animals produce from 1-2 to serveral hundreds of click per second. You can hear the clicks of the bottlenose dolphin here.
  • Burst-pulsed sounds (20-100kHz). These high repetition rate pulse trains; called barks, squawks, squeaks, blasts, buzzes and moans; consists of producing a pulse every less than 5μsecond, which is heard by humans as a continuous sound. They have  communicative and social functions. You can hear burst-pulsed sounds in an aggressive encounter among dolphins in this video:

  • Narrow-band tonal sounds (whistles) (5-85kHz). Whistles are thought to be produced only for communication purposes and not all odontocetes produce them. Because they are low frequency sounds, these sounds can travel longer distances than pulsed sounds. Some species, such as bottlenose dolphins can produce whistles and clicks at the same time, what permits to maintain communication and coordination during food search by echolocation. Even in some species, such as the bottlenose dolphins, exists signature whistles; that is a so distinctive whistle that serve to identify the animal, as if it was its name. Do you want to know more about signature whistles? Watch the video:

CHEMICAL COMMUNICATION IN CETACEANS

Chemical communication includes the smell and taste. Despite it is important in terrestrial mammals, in marine mammals it is limited.

The olfactory system in cetaceans is almost nonexistent, since there is no olfactory nerves, bulbs and tracts in adult odontocetes (cetaceans with teeth) and they are greatly reduced in adult mysticetes (baleen whales). In addition, all cetaceans close their blowholes under the water.

On the other hand, taste is more important. For example, bottlenose dolphins (Tursiops truncatus) have the ability to discriminate sour, sweet, bitter and salty solutions. However, they are least sensitive to different salt concentrations, being adaptive to the  marine environment.

delfin mular tursiops truncatus comunicacion cetaceos
Bottlenose dolohins (Tursiops truncatus) can discriminate sour, sweet, bitter and salty solutions (Picture: NASA, Creative Commons).

Other species, such as belugas (Delphinapterus leucas), release pheromones to alarm their mates and, with blood in the water, they quickly escape or become unusually excited.

VISUAL COMMUNICATION

Vision under water is limited by light levels, the organic matter and depth. Visual displays can be of different types, such as sexual dimorphic features, body postures and colouration patterns, which are simple; or more complex like sequences of behaviours, which indicate a context, species, age, sex or reproductive condition.

For cetaceans, visual signals are an alternative to acoustic communication when the animals are close. In the case of odontocetes, visual displays are behaviours, colouration and morphological traits.

For example, male narwhals have long spiral tusks and in males of several beaked whales there are lower teeth that protrude outside the mouth. In that cases, but they are not the only ones, these are sexually dimorphic features that may play an important role in regulating social signaling and mating.

narwhal, narval, monodon monoceros, comunicacion cetaceos
Male narwhals (Monodon monoceros) have a spiral tusk that may regulate social signaling and mating (Picture: NOAA).

Clear-water dolphin species show colour patterns in the body, such as spots, saddle patches, capes or longitudinal striping, such as the striped dolphin (Stenella coeruleoalba).

Stenella coeruleoalba delfin listado cetáceos mediterraneo
Striped dolphin (Stenella coeruleoalba) (Picture: Scott Hill National Marine Mammal Laboratory, Creative Commons).

Finally, gestures are also important in cetaceans, such as open-jaw threat displays, aerial leaps, flared pectoral fins, tail lobs and S-shaped postures. Posture and behaviours may also inform about predators, prey or to synchronise actions among individuals in order to coordinate the group or for social interaction.

In this video, you can see a dolphin displaying the open-jaw threat behaviour.

In this one, a humpback whale is showing the tail lob display.

COMMUNICATION THROUGH TOUCH

Cetaceans may use their nose, flippers, pectoral fins, dorsal fin, flukes, abdomen and the entire body as a means of communication by touching other animals.  Tactile signals are usually used together with other types. This type of communication has been noted in all cetaceans. Not only do body contact serve as a communication display, but it also may serve to remove dead skin.

For example, gray whales (Eschrichtius robustus) of San Ignacio Lagoon (Mexico) rub under small boats and tolerate petting of tourist.  You can watch it here:

Atlantic spotted dolphins (Stenella frontalis), bottlenose dolphins, humpback whales and North Atlantic right whales (Eubalaena glacialis), among others, gently rub their bodies with congeneres and it is common between mothers and calves.

REFERENCES

  • Berta, A; Sumich, JL & Kovacs, KM (2006). Marine mammals. Evolutionary biology. UK: Academic Press.
  • Dudzinkski, KM; Thomas, JA & Gregg, JD (2009). Communication in Marine Mammals. In Perrin, WF; Würsig, B & Thewissen, JGM (Ed.). Encyclopedia of Marine Mammals (260-269). Canada: Academic Press.
  • Cover picture: Gregory “Slobirdr” Smith, Creative Commons.

Have you ever seen some of these types of communication in cetaceans? Share it with us on the comments!

¿Cómo se comunican los cetáceos?

No podemos imaginar nuestras vidas sin comunicación, pero no somos la única especie animal que utiliza la comunicación como una forma de intercambiar información. En este post, explicaremos cómo es la comunicación de los cetáceos. 

¿CÓMO SE COMUNICAN LOS CETÁCEOS?

Dado que hay especies altamente sociales entre los cetáceos, es esencial comprender el papel que desempeña la comunicación en la regulación de las interacciones sociales en ellos. Cuando pensamos en la comunicación, generalmente solemos asociarla con la comunicación acústica, y, de hecho, ésta es la forma principal para los cetáceos; pero existen otros tipos, como la comunicación química, visual o táctil.

LA COMUNICACIÓN ACÚSTICA: LA MÁS IMPORTANTE

La comunicación acústica es la forma más importante de comunicación en los cetáceos y la razón es que la transmisión del sonido en el agua es muy rápida. Incluye tanto la vocal como la no vocal. En algunas especies puede ser muy compleja, ya que algunos de ellos tienen dialectos.

Debido al hecho de que los cetáceos dependen del sonido, algunas actividades como las prospecciones sísmicas pueden interferir en su comportamiento y amenazar su supervivencia.

COMUNICACIÓN NO VOCAL

La comunicación no vocal consiste en producir sonidos sin utilizar el aparato vocal, como el uso de aletas o aletas para golpear la superficie del agua, golpes con la mandíbula, rechinar los dientes o emitir burbujas. Al golpear con la cola, los cetáceos transmiten la presencia de una amenaza o angustia.

El breaching es el comportamiento típico de la mayoría de los cetáceos en el cual saltan vigorosamente en el aire. El sonido originado puede viajar varios kilómetros y se cree que es un mecanismo de espaciamiento, para mantener el contacto acústico o para informar sobre la estimulación sexual, la ubicación de alimento o una respuesta a una lesión o irritación. También puede ser una manera de eliminar los parásitos y la piel muerta. Se necesitan más estudios sobre el propósito del breaching.

LA COMUNICACIÓN VOCAL EN CETÁCEOS ES MUY COMPLEJA

Considerando la comunicación vocal, odontocetos y misticetos son muy diferentes. Por este motivo, los vamos a explicar por separado.

MISTICETOS

El sonido de las ballenas barbadas tiene una función social, como mantener el contacto cuando están a largas distancias, llamadas de unión, avisos sexuales, saludos, espaciamiento, amenazas e identificación individual. Es probable que utilicen el sonido como una forma de sincronizar actividades biológicas o conductuales, como la alimentación o la reproducción. Puedes leer más sobre la comunicación de las ballenas aquí.

Los científicos están de acuerdo en que hay tres (más uno) tipos de sonidos en los misticetos:

  • Gemidos de baja frecuencia (1-30 segundos, 20-200 Hz). Estos sonidos pueden ser tonos puros, como en el caso de los rorcuales comunes (Balaenoptera physalus) o sonidos complejos con estructura armónica. Estos sonidos se utilizan en la comunicación a larga distancia. Por ejemplo, los gemidos a 20 Hz de las ballenas jorobadas (Megaptera novaeangliae) pueden atravesar la mayoría de los obstáculos y recorrer cientos de kilómetros para llegar a sus congéneres para la comunicación. Se ha sugerido que, sin obstáculos, este tipo de sonidos puede viajar de polo a polo. Asombroso, ¿verdad? Puedes escuchar la llamada del rorcual común aquí.
fin whale, rorqual comun, balaenoptera physalus, circe, whale communication, cetacean communication, comunicacion ballenas, comunicacion cetaceos
Rorcual común (Balaenoptera physalus) (Foto: Circe).
  • Thumps o knocks cotos (< 1 segundo, < 200Hz). Estos sonidos son producidos por ballenas francas (Eubalaena sp), ballenas de Goenlandia (Balaena mysticetus), ballenas grises (Eschrichtius robustus), rorcuales comunes y rorcuales aliblancos (Balaenoptera acutorostrata).  Se relacionan estos sonidos con contextos sociales y actividad.  Aquí puedes escuchar a una ballena gris.
  • Chirridos y silbidos (> 1kHz, <0.1 segundos). Estos sonidos son producidos por la mayoría de las ballenas.
  • Canciones de ballenas jorobadas. Aquí puedes escchar algunas canciones de ballenas jorobadas:

ODONTOCETOS

Según los científicos, los sonidos de los odontocetos pueden dividirse en dos categorías:

  • Sonidos pulsados. Todos los cetáceos dentados producen este tipo de sonidos y se pueden usar para la ecolocación (la producción de ondas de sonido de alta frecuencia y la recepción de ecos para localizar objetos e investigar el entorno) o la comunicación.echolocation, dolphin, ecolocalizacion, delfines, comunicacion odontocetos, odontocete communicationEcolocación en delfines.

Se pueden subdividir en dos categorías:

  • Trenes de pulsos o clics. Los trenes de clics consisten en secuencias de pulsos acústicos (50 μs, 5-150kHz) repetidos a lo largo del tiempo. Están relacionados con la ecolocación. Las especies pueden tener una composición espectral amplia, como en los delfines mulares (Tursiops truncatus), o tener una composición de banda estrecha, como en los narvales (Monodon monoceros). En este tipo de sonido pulsado, los animales producen de 1-2 a centenares de clics por segundo. Puedes escuchar los clics del delfín mular aquí.
  • Pulsos explosivos (20-100 kHz). Estos trenes de pulsos de alta velocidad de repetición consisten en producir un pulso cada menos de 5 μsegundos, que los humanos escuchan como un sonido continuo. Tienen funciones comunicativas y sociales. En este vídeo, puedes escuchar estos sonidos en un encuentro agresivo entre delfines:

  • Sonidos tonales de banda estrecha (silbidos) (5-85kHz). Se cree que los silbidos se producen solo con fines de comunicación y no todos los odontocetos los producen. Debido a que son sonidos de baja frecuencia, estos sonidos pueden viajar distancias más largas que los sonidos pulsados. Algunas especies, como los delfines mulares, pueden producir silbidos y clics al mismo tiempo, lo que permite mantener la comunicación y la coordinación durante la búsqueda de alimentos por ecolocación. Incluso en algunas especies, como los delfines mulares, existen silbatos firma; es decir, un silbido tan distintivo que sirve para identificar al animal, como si fuera su nombre. ¿Quieres saber más sobre los silbatos firma? Mira el vídeo:

COMUNICACIÓN QUÍMICA EN CETÁCEOS

La comunicación química incluye el olor y el sabor. A pesar de que es importante en los mamíferos terrestres, en los mamíferos marinos es limitado.

El sistema olfatorio en los cetáceos es casi inexistente, ya que no hay nervios, bulbos y tractos olfativos en odontocetos adultos y se reducen en gran medida en los misticetos adultos. Además, todos los cetáceos cierran sus espiráculos bajo el agua.

Por otro lado, el gusto es más importante. Por ejemplo, los delfines mulares tienen la capacidad de discriminar soluciones agrias, dulces, amargas y saladas. Sin embargo, son menos sensibles a las diferentes concentraciones de sal, lo que es una adaptación al medio marino.

delfin mular tursiops truncatus comunicacion cetaceos
Los delfines mulares (Tursiops truncatus) pueden discriminar soluciones agrias, dulces, saladas y amargas (Foto: NASA, Creative Commons).

Otras especies, como las belugas (Delphinapterus leucas), liberan feromonas para alarmar a sus compañeros y, con sangre en el agua, escapan rápidamente o se excitan desproporcionadamente.

COMUNICACIÓN VISUAL

La visión bajo el agua está limitada por los niveles de luz, la materia orgánica y la profundidad. Las señales visuales pueden ser de diferentes tipos, como las características dimórficas sexuales, las posturas corporales y los patrones de coloración, que son simples; o más complejas como secuencias de comportamientos, que indican un contexto, especie, edad, sexo o condición reproductiva.

Para los cetáceos, las señales visuales son una alternativa a la comunicación acústica cuando los animales están cerca. En el caso de los odontocetos, las exhibiciones visuales consisten en comportamientos, coloración y rasgos morfológicos.

Por ejemplo, los narvales machos tienen largos colmillos en espiral y los machos de varios zifios tienen dientes inferiores que sobresalen fuera de la boca. En esos casos, pero no son los únicos, se trata de características sexualmente dimórficas que pueden desempeñar un papel importante en la regulación de las relaciones sociales y el apareamiento.

narwhal, narval, monodon monoceros, comunicacion cetaceos
Los narvales macho (Monodon monoceros) tienen colmillos espirales que regulan las relaciones sociales y el apareamiento (Foto: NOAA).

Las especies de delfines de aguas claras muestran patrones de coloración en el cuerpo, como manchas, parches, capas o rayas longitudinales, como el delfín listado (Stenella coeruleoalba).

Stenella coeruleoalba delfin listado cetáceos mediterraneo
Delfin listado (Stenella coeruleoalba) (Foto: Scott Hill National Marine Mammal Laboratory, Creative Commons).

Por último, los gestos también son importantes en los cetáceos, como las exhibiciones de amenaza con la mandíbula abierta, los saltos aéreos, el movimiento de las aletas pectorales, los golpes de cola y las posturas en forma de S. La postura y los comportamientos también pueden informar sobre depredadores, presas o sincronizar acciones entre individuos para coordinar el grupo o para la interacción social.

En este vídeo, puedes ver un delfín mostrando un comportamiento de amenaza con la mandíbula abierta.

En este otro, una ballena jorobada da golpes de cola.

COMUNICACIÓN MEDIANTE EL TACTO

Los cetáceos pueden usar su nariz, la cola, las aletas pectorales, la aleta dorsal, los flancos, el abdomen y todo el cuerpo como medio de comunicación al tocar a otros animales. Las señales táctiles generalmente se usan junto con otros tipos. Este tipo de comunicación se ha observado en todos los cetáceos. El contacto corporal no solo sirve como una vía de comunicación, sino que también puede servir para eliminar la piel muerta.

Por ejemplo, las ballenas grises (Eschrichtius robustus) de la Laguna de San Ignacio (México) se frotan bajo pequeñas embarcaciones y toleran las caricias de los turistas. Puedes verlo aquí:

Los delfines moteados del Atlántico (Stenella frontalis), los delfines mulares, las ballenas jorobadas y las ballenas francas del Atlántico Norte (Eubalaena glacialis), entre otros, frotan suavemente sus cuerpos con sus congeneres y es común entre madres y crías.

REFERENCIAS

  • Berta, A; Sumich, JL & Kovacs, KM (2006). Marine mammals. Evolutionary biology. UK: Academic Press.
  • Dudzinkski, KM; Thomas, JA & Gregg, JD (2009). Communication in Marine Mammals. En Perrin, WF; Würsig, B & Thewissen, JGM (Ed.). Encyclopedia of Marine Mammals (260-269). Canada: Academic Press.
  • Foto de portada: Gregory “Slobirdr” Smith, Creative Commons.

Some insects and other arthropods you should not confuse

Untrustworthy and sensational news about insects and arthropods are constantly shared through social networks, spreading tergiversated data and confusing amateur users. As a result, this usually leads to misidentifications and unnecessary alarmism toward harmless organisms.

Here we bring you a brief list of some insects and other arthropods that are usually confused and how to tell them apart. Don’t get tricked!

Spiders VS ‘Anything resembling them’

Spiders (Order Araneae) probably are some of the most feared arthropods among users for two main reasons: they are venomous and there are a lot of other arachnids that resemble them. So, it is quite understandable some people have serious doubts when finding an organism with eight long legs and a grim face.

However, most of these spider-like organisms are harmless and  unable to weave webs:

Harvestmen: unlike other arachnids, harvestmen or daddy longlegs (Order Opiliones) don’t have their body divided into two parts (prosoma and opisthosoma) by a thin waist, so they remind off a ‘ball with legs’. Also, they only have a pair of central eyes very close to each other. They neither have venom glands nor silk glands, so they can’t bite nor weave webs. They live in moist places, caves and near to streams and harvests. They are usually confused with spiders of the Pholcidae family because of their long legs.

Pholcus phalangioides (Pholcidae) (Picture by Olaf Leillinger, CC 2.5)
Harvestman (Picture by Dalavich, CC 3.0)

Solifugae: also known as camel spiders, Solifugae is an order of tropical arachnids characterized for having a segmented body and a pair of conspicuously large chelicerae forwardly projected. However, and despite their menacing appearance, they aren’t venomous (even though they bite can be very painful) nor weave webs. They inhabit desert and arid places, some of them are nocturnal and the diurnal ones move quickly looking for shadows to escape from sunlight.

Camel spider (Picture by Swen Langel, CC 2.0).

Amblypygi: also known as whip spiders or tailless whip scorpions, Amblypygi is an order of tropical arachnids that are neither spiders nor scorpions. Despite their menacing appearance, as it happens with camel spiders, whip scorpions don’t have venom glands. They have a pair of big thorny pedipalps ended in a pincer for grabbing preys, while the first pair of legs, which are filiform and segmented, act as sensory organs (not for walk). They don’t weave webs and have nocturnal habits.

Amblypygi (Picture by José Eugenio Gómez Rodríguez on Flickr, CC 2.0)

Pill bugs VS Pill millipedes

When playing in a park or in some natural place as a kid, you some time probably found a small animal, full of legs that rolled up when being touched.

These organisms are commonly known as woodlice. Woodlice belong to the suborder Oniscidea, a group of terrestrial crustaceans within the order Isopoda. They have a tough, calcarean and segmented exoskeleton, and inhabit moist places.

Armadillidium vulgare, Oniscidea (Picture by Franco Folini, CC 2.5)

Woodlice of the family Armadillidae, also known as pill bugs, are usually confused with pill millipedes (Subphylum Myriapoda, Class Diplopoda, Superorder Oniscomorpha), both groups with a similar external appearance and able to roll up into an almost perfect sphere as a defensive mechanism (convergent evolution).

Glomeris marginata, Oniscomorpha (Picture by Stemonitis, CC 2.5).

To tell them apart, you have to count the total number of legs per segment: if it has only a pair of legs per segment (one at each side of the segment), it is a pill bug; if it has two pairs, it is a pill millipede.

Bees and wasps VS Hoverflies

We talked widely about the main differences between bees and wasps (Order Hymenoptera) in this postThis time, we introduce you the hoverflies or syrphid flies (Order Diptera, Suborder Brachycera, Family Syrphidae), which resemble a lot to bees and wasps.

Resemblance of hoverflies to bees, wasps and bumblebees is a clear example of Batesian mimicry, which we explained widely in this post about animal mimicry. Moreover, hoverflies mimicry goes even further, since some of them also imitate the flight and the hum of these hymenopterans.

Hoverfly (Public domain picture, CC0).
Honey bee (Picture by Andy Murray on Flickr, CC 2.0)

To tell them apart, you have to pay attention to their eyes, antennae and wings: since they are flies, hoverflies have a pair of big compound eyes that occupy almost all their head, very short antennae with eight or less segments and a single pair of wings (the second pair has evolved into small equilibrium organs, the halteres), while wasps, bees and bumblebees have smaller compound eyes that occupy only the sides of the head, longer antennae with ten or more segments and two pairs of functional wings. Moreover, female hoverflies don’t have the abdomen ended in a stinger, so they are completely harmless.

Ladybugs VS Pyrrhocoris apterus

If you look for ladybugs pictures on Internet, you’d probably find a picture of this insect:

Public domain picture (CC0)

This is Pyrrhocoris apterus, a very common insect in the Palearctic area (from Europe to China) and recorded to the USA, Central America and India. You can find it on common mallows (Malva sylvestris), from which they eat seeds and sap, and they usually congregate in big groups because of their gregarious behavior.

Ladybugs are coleopterans (Order Coleoptera) with a more or less globular shape; they are carnivorous (with a diet based mainly on the intake of aphids) and can fly. Their first pair of wings are hard (elytra) and form a kind of shield that encloses the second pair of membranous wings.

Ladybug Coccinella septempunctata (Public domain picture, CC0)

On the other hand, Pyrrhocoris apterus is a bug (Order Heteroptera) with a depressed body, phytophagous habits and, unlike ladybugs and other bugs, it is unable to fly. Moreover, it doesn’t have a hardened shield.

Mantises VS Mantidflies

Mantises (Order Dyctioptera), which were widely addressed in this post, are very alike to this insect:

Mantispa styriaca (Picture by Gilles San Martin on Flickr, CC 2.0)

This insect belongs to the family Mantispidae (Order Neuroptera), also known as mantidflies or mantispids. This group is very well represented in tropical and subtropical countries, and just a few species are known from Europe. They have a pair of raptorial legs like those of Mantodea which they use for grabbing their preys.

Neuropterans, like mantidflies, green lacewings and antlions, have two pairs of similar sized wings with a very complex and branched venation. In Mantodea, the first pair of wings are smaller and harder than the second one, which are membranous and functional for flying; also, this second pair doesn’t have such a complex venation like that of neuropterans.

Mantodea (Picture by Shiva shankar, CC 2.0)

Mantidflies of the genera Climaciella and Entanoneura have a body coloration like that of some wasps, but they are totally harmless.

Climaciella brunnea (Picture by Judy Gallagher on Flickr, CC 2.0)

Mosquitoes VS Crane flies

Have you ever seen a giant mosquito and dreaded its bite? Well, you can stop being afraid of it.

These giant ‘mosquitoes’ (Order Diptera), which are commonly known as crane flies or daddy longlegs (Family Tipulidae), are totally inoffensive (and somewhat clumsy). They are distributed all over the world and inhabit moist places, like meadows and streams. Adults feed on nectar or don’t feed; in any case, they don’t suck blood!

Females have the abdomen ended in a kind of stinger; however, it is only their sharp ovipositor (not a stinger like those of bees or wasps).

Female crane fly (Picture by Irene Lobato Vila)

Dragonflies VS Damselflies

Both groups belong to the Order Odonata and have very similar appearance and behavior, being very common near sitting waters and lakes.

Two thirds of the Odonata are dragonflies (suborder Anisoptera), while the other third are damselflies (suborder Zygoptera). An easy way to tell them apart is by paying attention to their wings at rest: in dragonflies, wings are held flat and away from the body, while in damselflies they are held folded, along or above the abdomen.

On the other hand, eyes of dragonflies are large and touch in the vertex of the head, of which they occupy most of its surface, while those of dragonflies are smaller and are usually located on the sides of the head.

Dragonfly (Public domain image, CC0)
Damselfly (Picture by Xosema, CC 4.0)

.         .         .

If you know about any other insect or arthropod that can be confused, let us know it by leaving a comment!

References

Algunos insectos y otros artrópodos que no deberías confundir

A través de las redes sociales se comparten con demasiada frecuencia noticias y artículos poco contrastados o sensacionalistas sobre insectos y otros artrópodos. Muchos de estos enlaces dan información poco ajustada y generan confusión entre los usuarios aficionados, llevando a malas identificaciones, a confundir unos organismos con otros y a generar rechazo o alarmismos innecesarios.

En este artículo, te presentamos un pequeño listado de insectos y otros artrópodos que suelen confundirse y te explicamos cómo diferenciarlos. ¡Que no te den gato por liebre!

Arañas VS “Cualquier cosa que se les parezca”

Probablemente las arañas (Orden Araneae) sean de los artrópodos que más inquietudes despiertan por dos motivos: pueden picar y hay muchos organismos que se les parecen. Así pues, es bastante comprensible que la gente tenga dudas de cualquier organismo que presente ocho patas largas y cara de pocos amigos.

Sin embargo, la mayoría de organismos similares a las arañas no son venenosos ni construyen telarañas:

Opiliones: a diferencia de otros arácnidos, los opiliones (Orden Opiliones) carecen de un estrechamiento o cintura que divida su cuerpo en dos partes (prosoma y opistosoma), por lo que a simple vista parecen “una bola con patas”. Además, sólo presentan un par de ojos centrales muy cercanos entre sí. Tampoco presentan glándulas venenosas ni hileras para la síntesis de seda, por lo que no pueden picar ni construir telarañas. Son habituales en lugares húmedos, cuevas y zonas cercanas a riachuelos, así como en cultivos. Suelen confundirse con arañas de la familia Pholcidae por la longitud de sus patas.

Araña de la especie Pholcus phalangioides (Pholcidae) (Imagen de Olaf Leillinger, CC 2.5)
Opilión (Imagen de Dalavich, CC 3.0)

Solífugos: también conocidos como arañas camello, los solífugos (Orden Solifugae) son unos arácnidos tropicales algo particulares, ya que presentan el cuerpo claramente segmentado y unos grandes quelíceros proyectados hacia delante. Sin embargo, y a pesar de la amenazadora apariencia de sus quelíceros, no son venenosos (aunque su mordedura puede ser dolorosa). Tampoco construyen telarañas. Habitan lugares áridos o desérticos; muchos son nocturnos, y los diurnos se mueven activamente en busca de sombras para huir del sol (de ahí su nombre).

Araña camello o solífugo (Imagen de Swen Langel, CC 2.0).

Amblipigios: los amblipigios (Orden Amblypygy) son típicamente tropicales. A pesar de su aparente agresividad, son inofensivos dado que carecen de glándulas venenosas. Sus pedipalpos son grandes, llenos de espinas y acaban en pinza, mientras que el primer par de patas es extremadamente largo, muy fino y articulado. No construyen telarañas y son nocturnos.

Amblipigio (Imagen de José Eugenio Gómez Rodríguez en Flickr, CC 2.0)

Cochinillas de la humedad VS Milpiés

Eres un niño y estás jugando en el campo o un parque y, de repente, bajo una piedra o un tronco húmedo encuentras un pequeño animal con muchas patas y que se hace una bola al tocarlo. Seguro que a más de uno le resulta familiar esta escena.

Bicho bola o cochinilla de la humedad. Las cochinillas pertenecen al suborden Oniscidea, formado por crustáceos terrestres (Orden Isopoda). Su exoesqueleto es rígido, segmentado y calcáreo, y habitan lugares húmedos.

Armadillidium vulgare, Oniscidea (Imagen de Franco Folini, CC 2.5)

Los oniscídeos de la familia Armadillidae, como las cochinillas de la humedad, se confunden fácilmente con los Oniscomorpha, un superorden de milpiés (Subfilo Myriapoda, Clase Diplopoda) de cuerpo corto y de apariencia externa muy similar a los oniscídeos fruto de una evolución convergente. Igual que las cochinillas, también adoptan forma de bola para protegerse.

Glomeris marginata, Oniscomorpha (imagen de Stemonitis, CC 2.5).

Para diferenciarlos, basta con contar las patas que se observan por segmento: si sólo presenta un par (una a cada lado), es una cochinilla; si presenta dos pares (dos a cada lado), es un milpiés.

Abejas y avispas VS Sírfidos

En este artículo tratamos en detalle las diferencias más relevantes entre abejas y avispas (Orden Hymenoptera). En esta ocasión, os presentamos a los sírfidos (Orden Diptera, Suborden Brachycera, Familia Syrphidae), unas moscas que guardan un parecido razonable con estos himenópteros.

La similitud de los sírfidos con abejas, avispas y abejorros constituye un claro ejemplo de mimetismo batesiano, del cual hablamos ampliamente en esta entrada sobre el mimetismo animal.  En este caso, además, su mimetismo va más allá de la coloración, pues algunos imitan el vuelo y el zumbido de estos himenópteros.

Sírfido (Imagen de dominio público, CC0).
Abeja melífera (Imagen de Andy Murray en Flickr, CC 2.0)

Para diferenciarlos, basta con fijarse en los ojos, las antenas y las alas: los sírfidos, como moscas que son, presentan unos ojos muy grandes que ocupan gran parte de la cabeza, unas antenas muy cortas de ocho o menos segmentos (a veces casi inapreciables) y un solo par de alas para volar (el segundo par está reducido formando unos órganos de equilibro diminutos, los halterios), mientras que abejas y avispas presentan unos ojos más reducidos que ocupan sólo los laterales de la cabeza, unas antenas más largas, con diez o más segmentos y dos pares de alas funcionales. Además, las hembras de sírfido no presentan el abdomen terminado en aguijón, así que son inofensivas.

Mariquitas VS Pyrrhocoris apterus

Si buscáis en Internet imágenes de mariquitas, seguro que alguna vez os habéis encontrado con fotografías de este insecto:

Imagen de dominio público (CC0)

Este pequeño insecto es Pyrrhocoris apterus, muy frecuente en el Paleártico (desde Europa hasta China), y citado también en USA, América Central y en la India. Es fácil de observar sobre las malvas (Malva sylvestris), de las cuales ingiere la savia y las semillas, y normalmente aparece en grandes grupos dado su comportamiento gregario (especialmente sus formas inmaduras).

Las mariquitas son escarabajos (Orden Coleoptera) de cuerpo globoso, su alimentación es esencialmente carnívora (pulgones) y pueden volar. Su primer par de alas está endurecido (élitros) formando una especie de caparazón que esconde el segundo par de alas membranoso.

Mariquita de la especie Coccinella septempunctata (Imagen de dominio público, CC0)

En cambio, Pyrrhocoris apterus es una chinche (Orden Heteroptera) de cuerpo deprimido, fitófaga y, al contrario que las mariquitas y otras chinches, no puede volar. Además, no presentan un caparazón endurecido.

Mantis VS Mantíspidos

En esta entrada hablamos ampliamente sobre las mantis (Orden Dyctioptera), las cuales son a primera vista muy similares a este insecto:

Mantispa styriaca (Imagen de Gilles San Martin en Flickr, CC 2.0)

Este insecto pertenece a la familia de los mantíspidos (Orden Neuroptera, Familia Mantispidae), la cual está muy bien representada en países tropicales y subtropicales, y con tan sólo algunas especies conocidas de Europa. Presentan unas patas anteriores raptoras que recuerdan a las de las mantis y con las que sujetan a sus presas, las cuales suelen ser insectos de cuerpo blando.

Los neurópteros, como los mantíspidos, las crisopas o las hormigas león, presentan dos pares de alas de tamaño similar con una venación muy compleja y ramificada. En los mantodeos, en cambio, las primeras son más pequeñas y endurecidas que las segundas, las cuales son grandes y membranosas; además, no presentan una venación tan compleja.

Mantis (Imagen de Shiva shankar, CC 2.0)

Los mantíspidos de los géneros Climaciella y Entanoneura tienen una coloración y un aspecto similar a una avispa, pero son totalmente inofensivos.

Climaciella brunnea (Imagen de Judy Gallagher en Flickr, CC 2.0)

Mosquitos VS Típulas

Seguro que alguna vez has visto una especie de mosquito gigante, de varios centímetros de longitud, y te has asustado pensando en su picadura. Pues bien, no hace falta que te asustes más.

Estos grandes “mosquitos” (Orden Diptera) se conocen como típulas (Familia Tipulidae) y son totalmente inofensivas (y algo torpes). Se distribuyen por todo el mundo y suelen habitar lugares húmedos, como prados y riachuelos. En su forma adulta, se alimentan de néctar o no se alimentan (¡no succionan sangre!), y se dedican exclusivamente a la búsqueda de pareja. Las hembras presentan el abdomen con una terminación que recuerda a un aguijón, hecho que les da un aspecto amenazador; sin embargo, tan sólo se trata del ovopositor con el que realizan la puesta.

Típula (Imagen de Irene Lobato Vila)

Libélulas VS Caballitos del diablo

Ambos grupos pertenecen al Orden Odonata y tienen un aspecto y unos hábitos bastante similares, siendo frecuentes en zonas con aguas estancas o poco móviles.

Unas 2/3 partes de los Odonata son libélulas (suborden Anisoptera), mientras que casi todo el resto son caballitos del diablo (suborden Zygoptera). Una forma rápida y eficaz de diferenciarlos es mediante la observación de sus alas en reposo: en las libélulas, éstas quedan extendidas en posición horizontal con el suelo (no las pliegan), mientras que, en los caballitos del diablo, éstas quedan plegadas en posición vertical.

Por otro lado, los ojos de las libélulas son grandes y se tocan en el vértice de la cabeza, de la cual ocupan una gran superficie, mientras que los de los caballitos del diablo son más pequeños y laterales.

Libélula (Imagen de dominio público, CC0)
Caballito del diablo (Imagen de Xosema, CC 4.0)

.         .         .

Si conoces más insectos u otros artrópodos que generen confusión, ¡no dudes en comentárnoslo!

Referencias

Difusió-castellà