Arxiu de la categoria: General

The extended phenotype: genetics beyond the body

Genes determine our eye color, height, development throughout life and even our behavior. All living beings have a set of genes that, when expressed, manifest themselves in a more or less explicit way in their body, modeling it and giving it a wide diversity of traits and functions. However, is it possible that the expression of some genes has effects beyond the body itself?

Discover some basic ideas about the extended phenotype theory.

The extended phenotype: genetics beyond the body

First of all, let’s talk about two basic, but not less important, concepts that will help you to understand the extended phenotype theory: genotype and phenotype.

Genotype

Genotype is the collection of genes or the genetic information that a particular organism possesses in the form of DNA. It can also refer to the two alleles of a gene (or alternative forms of a gene) inherited by an organism from its parents, one per parent.

The genetic information that a particular organism possesses in the form of DNA constitutes its genotype. Public domain image.

It should not be confused with the genome: the genome is the set of genes conforming the DNA that a species has without considering its diversity (polymorphisms) among individuals, whereas the genotype does contemplate these variations. For example: the human genome (of the whole species Homo sapiens sapiens) and the genotype of a single person (the collection or set of genes and their variations in an individual).

Phenotype

The genotype, or at least a part of it, expresses inside an organism thus contributing to its observable traits. This expression takes place when the information encoded in the DNA traduces to synthetize proteins or RNA molecules, the precursor to proteins. The set of observable traits expressed in an organism through the expression of its genotype is called phenotype.

Eye color (phenotype) is determined by the expression of a set of genes within an organism (genotype). Picture by cocoparisienne on Pixabay (public domain).

However, genes are not always everything when defining the characteristics of an organism: the environment can also influence its expression. Thus, a more complete definition of phenotype would be the set of attributes that are manifested in an organism as the sum of its genes and the environmental pressures. Some genes only express a specific phenotype given certain environmental conditions.

The extended phenotype theory

The concept of extended phenotype was coined by Richard Dawkins in his book “The Extended Phenotype” (1982). Dawkins became famous after the publication of what would be his most controversial work, “The Selfish Gene” (1976), which was a precursor to his theory of the extended phenotype.

In the words of Dawkins himself, an extended phenotype is one that is not limited to the individual body in which a gene is housed; that is, it includes “all the effects that a gene causes on the world.” Thus, a gene can influence the environment in which an organism lives through the behavior of that organism.

Dawkins also considers that a phenotype that goes beyond the organism itself could influence the behavior of other organisms around it, thus benefiting all of them or only one… and not necessarily the organism that expresses the phenotype. This would lead to strange a priori scenarios such as, for example, that the phenotype of an organism was advantageous for a parasite which afflicts it rather than for itself. This idea is summed up in what Dawkins calls the ‘Central Theorem of the Extended Phenotype’: ‘An animal’s behaviour tends to maximize the survival of the genes ‘for’ that behaviour, whether or not those genes happen to be in the body of the particular animal performing it’.

A complex idea, isn’t it? However, it makes sense if we take into account the basic premise from which Dawkins starts, which addresses in his work ‘The selfish gene’: the basic units of evolution and the only elements on which natural selection acts, beyond individuals and populations, are genes. So, organisms’ bodies are mere ‘survival machines’ improved to ensure the perpetuation of genes.

Examples of extended phenotype

Perhaps all these concepts seem very complicated, but you will understand them better with some examples. According to Dawkins, there exist three main types of extended phenotype.

1) Animal architecture

Beavers build dams and modify their surroundings, in the same way that a termite colony builds a termite mound and alters the land as part of their way of life.

Dam built by beavers. Picture by Hugo.arg (CC 4.0)

Termite mounds in Autralia. Public domain image.

On the other hand, protective cases that caddisflies build around them from material available in the environment improve their survival.

Caddisfly larva inside its protective case made up of vegetal material. Picture by Matt Reinbold (CC 2.0)

These are all examples of the simplest type of extended phenotype: the animal architecture. The phenotype is, in this case, a physical or material expression of the animal’s behavior that improves the survival of the genes that express this behavior.

2) Parasite manipulation of host behavior

In this type of extended phenotype, the parasite expresses genes that control the behavior of its host. In other words, the parasite genotype manipulates the phenotype (in this case, the behavior) of the host.

A classic example is that of crickets being controlled by nematomorphs or gordiaceae, a group of parasitoid ‘worms’ commonly known as hair worms, as explained in this video:

To sum up: larvae of hair worms develop inside aquatic hosts, such as larvae of mayflies. Once mayflies undergoe metamorphosis and reach adulthood, they fly to dry land, where they die; and it is at this point that crickets enter the scene: an adult cricket feeds on the remains of mayflies and acquires the hair worm larvae, which develop inside the cricket by feeding on its body fat. Adult worms must return to the aquatic environment to complete their life cycle, so they will control the cricket’s brain to ‘force’ it to find a water source and drop in. Once in the water, the worms leave the body of the cricket behind, which drowns.

Other examples: female mosquitoes carrying the protozoan that causes malaria (Plasmodium), which makes female mosquitoes (Anopheles) to feel more attracted to human breath than uninfected ones, and gall induced by several insects on different host plants, such as cynipids (microwasps).

3) Action at a distance

A recurring example of this type of extended phenotype is the manipulation of the host’s behavior by cuckoo chicks (group of birds of the Cuculidae family). Many species of cuckoo, such as the common cuckoo (Cuculus canorus), lay their eggs in the nests of other birds for them to raise in their place; also, cuckoo chicks beat off the competition by getting rid of the eggs of the other species.

Look how the cuckoo chick gets rid of the eggs of reed warbler (Acrocephalus scirpaceus)!

In this case of parasitism, the chick is not physically associated with the host but, nevertheless, influences the expression of its behavioral phenotype.

Reed warbler feeding a common cuckoo chick. Picture by Per Harald Olsen (CC 3.0).

.            .            .

There are more examples and studies about this concept. If you are very interested in the subject, I strongly recommend you to read ‘The selfish gene’ (always critical and from an open minded perspective). Furthermore, if you have good notions of biology, I encourage you to read ‘The extended phenotype’.

Main picture: Alandmanson/Wikimedia Commons (CC BY-SA 4.0)

El fenotipo extendido: la genética más allá del propio cuerpo

Los genes determinan nuestro color de ojos, altura, desarrollo a lo largo de la vida e, incluso, nuestro comportamiento. Todos los seres vivos poseen un juego de genes que, al expresarse, se manifiestan de una forma más o menos explícita en su cuerpo, modelándolo y otorgándole de una serie de rasgos y funciones. ¿Es posible, sin embargo, que la expresión de algunos genes tenga efectos más allá del propio cuerpo?

Descubre algunas ideas básicas sobre la teoría del fenotipo extendido.

El fenotipo extendido: la genética más allá del propio cuerpo

Antes de nada, necesitamos aclarar dos conceptos básicos que os ayudarán a entender mejor el concepto de fenotipo extendido: genotipo y fenotipo.

Genotipo

El genotipo es la colección de genes o información genética que posee un organismo en particular en forma de ADN. También puede referirse a los dos alelos de un gen (o formas alternativas de un gen) que hereda un organismo de sus progenitores, uno por progenitor.

La información que un organismo en particular posee en forma de DNA constituye su genotipo. Imagen de dominio público.

No debe confundirse con el genoma: mientras que el genoma hace referencia al conjunto de genes contenidos en el ADN de una especie sin tener en cuenta su diversidad (polimorfismos) entre individuos, el genotipo sí contempla estas variaciones. Por ejemplo: el genoma humano (de toda la especie Homo sapiens sapiens) y el genotipo de una única persona (el acervo o conjunto de genes y sus variaciones en un único individuo).

Fenotipo

El genotipo, o al menos parte de él, se expresa en el organismo contribuyendo a sus rasgos observables. Esta expresión tiene lugar cuando la información codificada en el ADN de los genes se utiliza para sintetizar proteínas o moléculas de ARN, el precursor de las proteínas. El conjunto de rasgos observables que se expresan a partir del genotipo recibe el nombre de fenotipo.

El color de los ojos (fenotipo) se manifiesta a partir de la expresión de los genes de cada organismo particular (genotipo); es decir, de sus alelos. Imagen de cocoparisienne de Pixabay (dominio público).

Sin embargo, los genes no lo son siempre todo a la hora de definir los rasgos de un organismo: el entorno también puede influir sobre su expresión. Así pues, una definición más completa de fenotipo sería el conjunto de atributos que se manifiestan en un organismo en particular como la suma de la expresión de sus genes y de las presiones del entorno sobre éstos. Algunos genes únicamente expresan un fenotipo concreto dadas ciertas condiciones ambientales.

La teoría del fenotipo extendido

El concepto de fenotipo extendido fue acuñado por Richard Dawkins en su libro “El Fenotipo Extendido” (1982). Dawkins se hizo famoso tras la publicación de la que sería su obra divulgativa más polémica, “El gen egoísta” (1976), la cual actúa como precursora de su teoría sobre el fenotipo extendido.

En palabras del propio Dawkins, un fenotipo extendido es aquel que no se limita al cuerpo individual en el que se aloja un gen; es decir, son “todos los efectos que un gen causa sobre el mundo”. Así pues, un gen puede influir en el medio ambiente en el que vive un organismo por medio del comportamiento de dicho organismo.

Dawkins también considera que un fenotipo que va más allá del propio organismo podría llegar a influir en el comportamiento de otros organismos a su alrededor, beneficiando así a todos ellos o únicamente a uno… y no necesariamente al organismo que expresa el fenotipo. Esto llevaría a escenarios a priori extraños como, por ejemplo, que el fenotipo de un organismo fuera ventajoso para un parásito que lo atacara en lugar de para él mismo. Esta idea se resume en lo que Dawkins llama el Teorema central del fenotipo extendido: “el comportamiento de un animal tiende a maximizar la supervivencia de los genes ‘para’ ese comportamiento, independientemente de que dichos genes estén o no en el cuerpo del animal que manifiesta ese comportamiento”.

Esta idea tan compleja cobra sentido si tenemos en cuenta la premisa básica de la que parte Dawkins, la cual trata en su obra “El gen egoísta”: la unidad básica de la evolución y único elemento sobre el que actúa la selección natural, más allá de los individuos y las poblaciones, son los genes, siendo los cuerpos de los organismos meras “máquinas de supervivencia” mejoradas para asegurar la perpetuación de los genes.

Ejemplos de fenotipo extendido

Quizá todos estos conceptos parecen muy complicados, pero lo entenderéis mejor con algunos ejemplos. Según Dawkins, existen tres tipos básicos de fenotipo extendido.

1) Arquitectura animal

Los castores construyen diques y modifican su entorno, de la misma manera que una colonia de termitas construye un termitero y altera el terreno, como parte de su forma de vida.

Dique construído por castores. Imagen de Hugo.arg (CC 4.0)

Termiteros en Australia. Imagen de dominio público.

Por otro lado, las casas o estuches que construyen los tricópteros a su alrededor a partir de material disponible en el medio mejoran su supervivencia.

Larva de tricóptero dentro de su estuche hecho con material vegetal. Imagen de Matt Reinbold (CC 2.0)

Todos estos son ejemplos del tipo de fenotipo extendido más simple: la arquitectura animal. El fenotipo es, en este caso, una expresión física o material del comportamiento del animal que contribuye a mejorar la supervivencia de los genes que expresan este comportamiento.

2) Manipulación del comportamiento del hospedador por parte del parásito

En este tipo de fenotipo extendido, el parasito expresa unos genes que controlan el comportamiento de su hospedador. Dicho de otra forma, el genotipo del parásito manipula el fenotipo (en este caso, el comportamiento) del parasitado.

Un ejemplo clásico es el de grillos siendo controlados por nematomorfos o gordiáceos, un grupo de “gusanos” parasitoides (en inglés, “hair worms”), como se explica en este vídeo:

En resumen: las larvas de estos gusanos se desarrollan en huéspedes acuáticos, como las larvas de las efímeras. Una vez las efímeras alcanzan la adultez tras la metamorfosis, se desplazan volando a tierra firme, donde mueren; y es aquí donde los grillos entran en escena: un grillo adulto se alimenta de los restos de las efímeras y adquiere los parasitoides, los cuales se desarrollan en el interior del grillo alimentándose de su grasa corporal. Los gusanos adultos deben volver al medio acuático para completar su ciclo vital, por lo que, para ello, controlarán el cerebro del grillo para “obligarle” a ir hasta una fuente de agua. Una vez en el agua, los gusanos dejan atrás el cuerpo del grillo, el cual muere ahogado.

Otros ejemplos son el de las hembras de mosquito portadoras del protozoo de la malaria (Plasmodium), el cual hace que las hembras de mosquito (Anopheles) se sientan más atraídas por el aliento humano que las no infectadas, y el de las agallas inducidas en plantas por varias insectos, como los cinípidos (pequeñas avispas).

3) Acción a distancia

Un ejemplo recurrente de este tipo de fenotipo extendido es la manipulación del comportamiento del hospedador por parte de los polluelos de cuco (grupo de aves de la familia Cuculidae). Muchas especies de cucos, como el cuco común (Cuculus canorus), ponen sus huevos en los nidos de otras aves para que éstas los críen en su lugar; al mismo tiempo, los polluelos de cuco eliminan la competencia deshaciéndose de los huevos de la otra especie.

¡Mirad cómo el polluelo de cuco se deshace de los huevos de carricero común (Acrocephalus scirpaceus)!

En este caso de parasitismo, el polluelo no está físicamente asociado al hospedador pero, sin embargo, influye en la expresión de su fenotipo conductual.

Carricero común adulto alimentando a un polluelo de cuco común. Imagen de Per Harald Olsen (CC 3.0).

.            .            .

Existen muchos más ejemplos y estudios acerca de este concepto. Si os interesa mucho el tema, os recomiendo la lectura del gen egoísta (siempre desde una mirada crítica y abierta). Si, además, tenéis unos buenos conocimientos en biología, os animo a leeros también el fenotipo extendido.  

Imagen de portada: Alandmanson/Wikimedia Commons (CC BY-SA 4.0)

El fenotip estès: la genètica més enllà del propi cos

Els gens determinen el nostre color d’ulls, la nostra alçada, guien el nostre desenvolupament al llarg de la vida i, fins i tot, el nostre comportament. Tots els éssers vius tenen gens que, un cop s’expressen, es manifesten d’una manera més o menys explícita en el seu cos, modelant-lo i atorgant-li tota una sèrie de trets i funcions. És possible, però, que l’expressió d’alguns gens tingui efectes més enllà del propi cos?

Descobreix algunes idees bàsiques sobre la teoria del fenotip estès.

El fenotip estès: la genètica més enllà del propi cos

Primer de tot, necessitem aclarir dos conceptes bàsics que us ajudaran a entendre millor el concepte de fenotip estès: genotip i fenotip.

Genotip

El genotip és la col·lecció de gens o informació genètica que posseeix un organisme en particular en forma d’ADN. També pot referir-se als dos al·lels d’un gen (o formes alternatives d’un gen) que hereta un organisme dels seus progenitors, un per progenitor.

La informació genètica que poseeix un organisme en particular en forma d’ADN constitueix el seu genotip. Imatge de domini públic.

No s’ha de confondre amb el genoma: mentre que el genoma fa referència al conjunt de gens continguts en l’ADN d’una espècie sense tenir en compte la seva diversitat (polimorfismes) entre individus, el genotip sí que contempla aquestes variacions. Per exemple: el genoma humà (de tota l’espècie Homo sapiens sapiens) i el genotip d’una única persona (conjunt de gens i les seves variacions en un únic individu).

Fenotip

El genotip, o com a mínim una part, s’expressa dins l’organisme contribuint als seus trets observables. Aquesta expressió té lloc quan la informació codificada en l’ADN dels gens s’utilitza per sintetitzar proteïnes o molècules d’ARN, el precursor de les proteïnes. El conjunt de trets observables que s’expressen a partir del genotip rep el nom de fenotip.

El color dels ulls (fenotip) es manifesta a partir de l’expressió dels gens de cada organisme particular (genotip); és a dir, dels seus al·lels. Imatge de cocoparisienne a Pixabay (domini públic).

Tanmateix, els gens no ho són sempre tot a l’hora de definir els trets d’un organisme: l’entorn també pot influir sobre la seva expressió. Així doncs, una definició més completa de fenotip seria el conjunt d’atributs que es manifesten en un organisme en particular com la suma de l’expressió dels seus gens i de les pressions de l’entorn sobre aquests. Alguns gens únicament expressen un fenotip concret donades certes condicions ambientals.

La teoria del fenotip estès

El concepte de fenotip estès va ser proposat per Richard Dawkins en el seu llibre “El Fenotip Estès” (1982). Dawkins es va fer famós després de la publicació de la que seria la seva obra divulgativa més polèmica, “El gen egoista” (1976), la qual li serví de base per a l’elaboració de la seva teoria sobre el fenotip estès.

Segons el propi Dawkins, un fenotip estès és aquell que no es limita al cos individual en el qual s’allotja un gen; és a dir, són “tots els efectes que un gen causa sobre el món”. Així doncs, un gen pot influir en el medi ambient en què viu un organisme per mitjà del comportament d’aquest organisme.

Dawkins també considera que un fenotip que va més enllà del propi organisme podria arribar a influir en el comportament d’altres organismes al seu voltant, beneficiant així a tots ells o únicament a un… i no necessàriament a l’organisme que expressa el fenotip. Això ens duria a escenaris a priori estranys com, per exemple, que el fenotip d’un organisme fora avantatjós per a un paràsit que l’ataqués en lloc de per a ell mateix. Aquesta idea es resumeix en el que Dawkins anomena el “Teorema central del fenotip estès”: “el comportament d’un animal tendeix a maximitzar la supervivència dels gens ‘per’ aquest comportament, independentment que aquests gens estiguin o no dins del cos de l’animal que manifesta aquest comportament”.

Aquesta idea tan complexa adquireix sentit si tenim en compte la premissa bàsica de la qual parteix Dawkins, la qual tracta en la seva obra “El gen egoista”: la unitat bàsica de l’evolució i únic motor de la selecció natural, més enllà dels individus i les poblacions, són els gens, sent els cossos dels organismes meres “màquines de supervivència” millorades per assegurar la perpetuació dels gens.

Exemples de fenotip estès

Potser tots aquests conceptes semblen molt complicats, però ho entendreu tot molt millor amb alguns exemples. Segons Dawkins, hi ha tres tipus bàsics de fenotip estès.

1) Arquitectura animal

Els castors construeixen dics i modifiquen el seu entorn, de la mateixa manera que una colònia de tèrmits construeix un termiter i altera el terreny, com a part del seu estil de vida.

Dic construït per castors. Imatge de Hugo.arg (CC 4.0)

Termiters a Austràlia. Imatge de domini públic.

D’altra banda, les cases o estoigs que construeixen els tricòpters al seu voltant a partir de material disponible en el medi milloren la seva supervivència.

Larva de tricòpter dins del seu estoig fet de material vegetal. Imatge de Matt Reinbold (CC 2.0)

Tots aquests són exemples del tipus de fenotip estès més simple: l’arquitectura animal. El fenotip és, en aquest cas, una expressió física o material del comportament de l’animal que contribueix a millorar la supervivència dels gens que expressen aquest comportament.

2) Manipulació del comportament de l’hoste per part del paràsit

En aquest tipus de fenotip estès, el paràsit expressa uns gens que controlen el comportament del seu hoste. Dit d’una altra manera, el genotip del paràsit manipula el fenotip (en aquest cas, el comportament) del parasitat.

Un exemple clàssic és el de grills sent controlats per nematomorfs o gordiacis, un grup de “cucs” parasitoides (en anglès, “hair worms”), com s’explica en aquest vídeo:

En resum: les larves d’aquests cucs es desenvolupen dins d’hostes aquàtics, com les larves de les efímeres. Quan les efímeres assoleixen l’edat adulta un cop feta la metamorfosi, es desplacen volant a terra ferma, on moren; i és aquí on els grills entren en escena: un grill adult s’alimenta de les restes de les efímeres i adquireix els parasitoides, els quals es desenvolupen a l’interior del grill alimentant-se del seu greix corporal. Els cucs adults han de tornar al medi aquàtic per a completar el seu cicle vital i, per fer-ho, controlen el cervell del grill per “obligar-lo” a anar fins a una font d’aigua. Un cop a l’aigua, els cucs deixen enrere el cos del grill, el qual mor ofegat.

Altres exemples són el de les femelles de mosquit portadores del protozou de la malària (Plasmodium), el qual fa que les femelles de mosquit (Anopheles) se sentin més atretes per l’alè humà que les no infectades, i el de les gales induïdes en plantes per diversos insectes, com els cinípids (petites vespes).

3) Acció a distància

Un exemple recurrent d’aquest tipus de fenotip estès és la manipulació del comportament de l’hoste per part dels pollets de cucut (grup d’aus de la família Cuculidae). Moltes espècies de cucuts, com el cucut comú (Cuculus canorus), ponen els ous en els nius d’altres aus perquè aquestes els criïn enlloc seu; al mateix temps, els pollets de cucut eliminen la competència desfent-se dels ous de l’altra espècie.

Mireu com el pollet de cucut es desfà dels ous d’una boscarla de canyar (Acrocephalus scirpaceus)!

En aquest cas de parasitisme, el pollet no està físicament associat a l’hoste, però influeix en l’expressió del seu fenotip conductual.

Boscarla de canyar alimentant un pollet de cucut comú. Imatge de Per Harald Olsen (CC 3.0).

.            .            .

Hi ha molts més exemples i estudis sobre aquest concepte. Si us interessa molt el tema, us recomano la lectura del gen egoista (sempre des d’una mirada crítica i oberta). Si, a més a més, teniu uns bons coneixements en biologia, us animo a llegir-vos també el fenotip estès.

Imatge de portada: Alandmanson / Wikimedia Commons (CC BY-SA 4.0)

The Asian giant hornet (Vespa mandarinia): What do we know about it?

Among the numerous exotic invasive organisms that have reached Europe and America, Asian wasps and hornets are some of the most commented on mass media, social networks and naturalistic forums. The Asian hornet (Vespa velutina) got Europe and, posteriorly, the Iberian Peninsula, becoming one of the greatest headaches for beekeepers and administrations as it is a very insatiable species. However, there exists an insect that concerns Westerner beekeepers even more than the Asian hornet: the Asian giant hornet (Vespa mandarinia).

What do we know about this species? Is it true is has been found in The West or is this a mere unfounded rumour? Keep reading to learn some more.

The Asian giant hornet (Vespa mandarinia): What do we know about it?

During my recent travel to Japan, I met face to face for the first time with one of the most amazing insects: the Asian giant hornet (Vespa mandarinia). Meeting this organism really inspired me to write this post.

The Asian giant hornet (Vespa mandarinia) is a hymenopteran native to the East and Southeast of Asia especially abundant in rural landscapes of Japan. Until recently, it was considered that the Japanese giant hornets belonged to an independent variety or subspecies (Vespa mandarinia japonica); however, this category is currently invalid.

Among the ‘true hornets’ (species belonging to the Vespa genus), the Asian giant hornet is the biggest worldwide. Workers of this species span between 3.5 to 4.0 cm long, whereas queens can reach a length between 5.0 to 6.0 cm, even more in some cases, and a wingspan of 3.5 to 7.5 cm depending on the specimen. A monster compared to the Asian hornet (Vespa velutina), which has a body length between 2.0 and 3.0 cm (3.5 in queens).

Vespa mandarinia Natural Museum of Natural Science Tokyo
Specimen of Vespa mandarinia (left) deposited in the main exhibition of the National Museum of Natural History of Tokyo, Japan. Picture by Irene Lobato Vila.

In fact, in Japan this species is commonly known as オオスズメバチ (oosuzumebachi), which can be translated as ‘sparrow wasp’.

How can we distinguish it from other related species?

The Asian giant hornet is easily recognizable and is distinguished from other Vespa species by its large size, as well as by having an orangish yellow head that can be seen even when the organism is in motion (and that differs from the rest of the body, which is darker), a well-developed clypeus and a very wide face seen from the front.

Face of Vespa mandarinia. Modified from the original picture took by Gary Alpert, CC 3.0.

In addition, and unlike the Asian hornet (V. velutina), it has darker legs (yellow in V. velutina) and the abdomen or metasoma with alternate yellow and black stripes (abdomen almost black, with the fourth segment yellow, in V. velutina).

Vespa mandarinia male
Vespa mandarinia. Picture by Yasunori Koide, CC 4.0.

Vespa velutina
Vespa velutina. Picture by Francis ITHURBURU, CC 3.0.

The Asian giant hornet is very similar to the European hornet (Vespa crabro). However, it can be easily distinguished from this species by the above-mentioned traits.

Comparisson Vespa
Vespa mandarinia (above), Vespa crabro (below, left), Vespa vulgaris (below, mid) and Vespa germanica (below, right). Picture by @carim_nahaboo on picbear.org.

Besides the genus Vespa, the Asian giant hornet must not be confused with Megascolia maculata, a very common species of the Scoliidae family in Europe and Middle East that ranges from 2 to 4 cm.

Megascolia maculata. Picture by gailhampshire, CC 2.0.

Behaviour and biology

Nesting

The Asian giant hornet is an eusocial species (a colonial and hierarchical organism, with coexisting sexual and asexual stages and with a strong sense of parental caring) that inhabits mainly in rural landscapes, on hills and low forests. In addition, it is the only species within the genus Vespa that nests almost exclusively in holes in the ground, rarely inside buildings. These can be pre-existing cavities (left by rotten roots, abandoned nests…) or, in contrast, holes made by the hornet itself.

During the reproductive season, V. mandarinia is especially aggressive and territorial, and workers will not hesitate to attack if they feel threatened. The mating season of this species takes place in autumn, so we must take this into account be aware when entering their habitats (during our climbing of Mount Misen, in Itsukushima (southern Hiroshima), we encountered several of these hornets…and they did not seem very happy to see us there!).

Mount Misen
Way to the top of Mount Misen (Itsukushima, Japana), V. mandarinia habitat. Picture by Irene Lobato Vila.

Vespa mandarinia workers often fly 1 to 2 km from their nest, but can travel up to 8 km. Thus, they will not hesitate on chasing a victim several kilometres if necessary.

Food habits

Vespa mandarinia is a very insatiable species, even more than its relative V. velutina: it preys on a wide variety of insects, including honey bees and other eusocial wasps. Moreover, it is a dominant species and it is not threatened by other organisms except by humans, so currently there are no efforts to conserve this species.

The voraciousness of the Asian giant hornet is an enormous headache for beekeepers, since a single hornet can end up with up to 40 to 50 bees. Besides, it is the only eusocial wasp to stage group attacks to beehives and other eusocial wasp nests. These attacks are divided into three phases:

  • Hunting phase: solitary workers wait near the beehive or nest and capture prays in flight. These preys are brought to their own nests to serve as food for their larvae. This phase has an unlimited duration.
  • Slaughter phase: between 2 and 50 workers gather in the beehive or wasp nest entrance, which has been previously marked with a chemical secreted by another worker. Then, a slaughter begins. In contrast to the previous phase, now hornets ignore the dead bodies of their preys. If the attack stretches on during a long time, hornets can start to starve.
  • Occupation phase: hornets become territorial and defend the hive from any possible attack. Meanwhile, some workers capture the conquered hive’s larvae to feed their descendant and their queen.

The European honeybee (Apis mellifera) has been widely imported to Japan since the Asian native honeybee (Apis cerana) is less productive. Unfortunately, the European honeybee is defenseless against V. mandarinia as it has not developed any evolutive defensive mechanism like A. cerana did.

Take a look at this video to learn more about the defensive mechanisms of the Asian honey bee, which was also commented on this post:

Sting

Females of Vespa mandarinia have a stinger about 6mm to 1cm long with which they inoculate a large amount of venom. It is precisely the volume of venom injected and not its composition that makes the Asian giant hornet especially dangerous.

Between 30 to 50 people die due to Asian hornet attacks each year in Japan, thus being the most lethal organism in this country followed by bears and venomous snakes. A single sting can require from primary medical assistance or even hospitalization, and it can cause anaphylactic reactions even in non-allergic people if the amount of venom inoculated is large enough (due to a single or multiple stings).

Warning
Warning sign in Enoshima (Kanagawa, Japan). Picture by Irene Lobato-Vila.

Has this species arrived in The West?

Vespa mandarinia has not settled in The West for now. Recently, it has been confirmed the first nest of this species found in Vancouver, Canada, which was eradicated according to sources of the Agricultural Ministry. Excepting this isolated case, there have not been new records of V. mandarinia in Western countries, so the supposed records of this species resulted from misidentifications.

Despite this, administrations are on the alert because V. mandarinia could arrive in The West like V. velutina did in 2004. For example, in Spain it was included in the Spanish catalogue of invasive species, even though it is not settled in this country, as it is considered a serious potential threat for native species as well as for apiculture.

.          .          .

Will we see V. mandarinia in The West someday? We hope no…

Main picture by Yasunori Koide, CC 3.0.

El avispón asiático gigante (Vespa mandarinia): ¿Qué sabemos sobre él?

De entre los numerosos organismos exóticos invasores que han alcanzado Europa, avispas y avispones asiáticos se encuentran dentro de los más comentados en redes sociales y foros naturalistas. El avispón asiático (Vespa velutina) se instaló en Europa y, posteriormente, en la Península Ibérica, convirtiéndose en un dolor de cabeza para apicultores y administración al tratarse de una especie especialmente voraz. Sin embargo, existe un insecto que preocupa aún más, si cabe, a los apicultores occidentales que el avispón asiático: el avispón asiático gigante (Vespa mandarinia).

¿Qué sabemos sobre esta especie? ¿Su presencia en Occidente es real o simplemente el fruto de identificaciones erróneas? Te lo contamos en este artículo.

El avispón asiático gigante (Vespa mandarinia): ¿Qué sabemos sobre él?

Durante mi último viaje a Japón el pasado mes de septiembre, me encontré cara a cara con un insecto espectacular: el avispón asiático gigante (Vespa mandarinia). Verla en directo me impresionó bastante, hecho que me motivó a escribir este post.

El avispón asiático gigante (Vespa mandarinia) es una especie de himenóptero nativa del este y sudeste de Asia especialmente abundante en las zonas rurales de Japón. Hasta hace poco tiempo, se consideraba que la variedad japonesa pertenecía a una subespecie endémica propia de este país (Vespa mandarinia japonica); sin embargo, actualmente esta clasificación no se considera válida.

Se trata del avispón (especie dentro del género Vespa, o avispones verdaderos) más grande del mundo. Las obreras miden entre 3.5 y 4.0 cm, mientras que las reinas suelen medir alrededor de 5.0 o 6.0 cm, incluso más en algunos casos puntuales, y presentar una longitud de ala a ala de entre 3.5 y 7.5 cm; un monstruo en comparación a los avispones asiáticos (Vespa velutina), que miden de 2.0 a 3.0 cm (3.5 cm las reinas).

Vespa mandarinia Natural Museum of Natural Science Tokyo
Ejemplar de Vespa mandarinia (izquierda) depositado en la exposición general del Museo Nacional de Historia Natural de Tokyo, Japón. Imagen de Irene Lobato Vila.

En Japón, de hecho, se las conoce como オオスズメバチ (oosuzumebachi), lo que puede traducirse como “avispa gorrión”.

¿Cómo lo diferenciamos de otras especies similares?

El avispón gigante asiático es fácilmente reconocible, y se diferencia de otras especies dentro del género Vespa, por su gran envergadura, presentar una cabeza completamente amarillo-anaranjada muy fácil de distinguir incluso en movimiento (la cual contrasta con el resto del cuerpo, de color más oscuro), un clípeo bien desarrollado y una cara en visión frontal muy ensanchada por los lados.

Cara Vespa mandarinia
Cara de Vespa mandarinia. Imagen modificada a partir de la original de Gary Alpert, CC 3.0.

Además, y a diferencia del avispón asiático (V. velutina), presenta las patas más oscuras (amarillas en V. velutina) y el metasoma o abdomen generalmente con rallas amarillo-anaranjadas y negras alternadas (casi negro, con el cuarto segmento amarillo, en V. velutina).

Vespa mandarinia male
Vespa mandarinia. Imagen de Yasunori Koide, CC 4.0.

Vespa velutina
Vespa velutina. Imagen de Francis ITHURBURU, CC 3.0.

El avispón gigante asiático es muy similar a nuestro avispón autóctono, el avispón europeo (en América) o simplemente avispón (Vespa crabro). Sin embargo, se diferencia fácilmente de esta especie por los rasgos mencionados anteriormente.

Comparisson Vespa
Vespa mandarinia (arriba), Vespa crabro (abajo a la izquierda), Vespa vulgaris (abajo centro) y Vespa germanica (abajo a la derecha). Imagen de @carim_nahaboo en picbear.org.

Fuera del género Vespa, tampoco debe confundirse con Megascolia maculata, frecuente en Europa y Próximo Oriente y con un tamaño de entre 2 y 4 cm.

Megascolia maculata. Imagen de gailhampshire, CC 2.0.

Comportamiento y biología

Nidificación

El avispón asiático gigante es una especie eusocial (organismo colonial y jerárquio, con formas sexuales y asexuales que conviven a la vez y con un fuerte cuidado parental) que nidifica principalmente en montañas y bosques situados a poca altura. Además, y a diferencia del resto de especies dentro del género Vespa, V. mandarinia construye sus nidos casi exclusivamente en cavidades en el suelo, raramente en edificios. Estas cavidades pueden ser excavadas por el propio avispón, proceder de espacios situados cerca de raíces putrefactas o bien tratarse de madrigueras abandonadas de roedores, serpientes u otros organismos.

En épocas de reproducción y nidificación, V. mandarinia se presenta especialmente agresiva y territorial, por lo que las obreras no dudarán en atacar en caso de sentirse amenazadas. El periodo de cópula de esta especie suele tener lugar en otoño, por lo que es en esta época cuando, en caso de adentrarnos en territorios de nidificación, debemos ir con más cuidado (durante nuestro ascenso al Monte Misen, en la isla de Itsukushima (al sur de Hiroshima), nos encontramos una buena cantidad de estos avispones…y no parecían muy contentos de vernos allí).

Mount Misen
Camino de ascenso al Monte Misen (Itsukushima, Japón), hábitat de V. mandarinia. Imagen de Irene Lobato Vila.

Las obreras suelen alejarse del nido entre 1 y 2 km, pudiendo alcanzar incluso los 8 km. No dudarán, pues, en perseguir a una posible amenaza diversos quilómetros en caso de ser necesario.

Alimentación

Vespa mandarinia es muy voraz, más incluso que su pariente V. velutina: se alimenta de otros insectos, entre ellos de abejas melíferas. Es, además, una especie dominante en los hábitats en los que se encuentra, por lo que casi no presenta amenazas (salvo el propio ser humano) y actualmente no se teme por su estado de conservación.

Su voracidad es la que la convierte en una especie especialmente problemática para la apicultura, pues un solo avispón puede acabar tranquilamente con 40 o 50 abejas en un minuto. Además, es la única avispa eusocial que realiza ataques grupales contra colmenas de abejas y otros nidos de avispas. Estos ataques suelen dividirse en tres fases:

  • Fase de caza: obreras solitarias esperan fuera de la colmena o nido y capturan a sus presas al vuelo. Las presas son llevadas por el avispón a su nido para alimentar a las larvas. Fase de durabilidad indefinida.
  • Fase de “matanza”: entre 2 y 50 avispones se reúnen en una colmena o nido previamente marcado químicamente por una obrera, e inician una matanza masiva de abejas o avispas. A diferencia de la fase anterior, en ésta los avispones ignoran los cadáveres de las presas, que se van acumulando. Raras veces se producen bajas en las filas de los avispones, pero si sus ataques se prolongan mucho en el tiempo es posible que mueran exhaustas o de hambre.
  • Fase de ocupación: los avispones pasan a defender la colmena o nido “conquistado”, del cual capturan las larvas para dar de comer a su propia progenie y a la reina. Durante la ocupación, los avispones pasan a ser muy territoriales y agresivos.

La abeja melífera europea (Apis mellifera) ha sido ampliamente importada a Japón debido a que su especie de abeja melífera nativa (Apis cerana) no es tan productiva. Desgraciadamente, la abeja melífera europea se encuentra indefensa ante V. mandarinia al no haber desarrollado ningún sistema defensivo contra este voraz depredador, cosa que sí ha hecho A. cerana.

Si no, mirad este vídeo, el cual ya comentamos en este post:

Picadura

Las hembras de Vespa mandarinia presentan un aguijón de entre 6mm y 1cm con el que pueden inyectar una gran cantidad de veneno. Y es precisamente la cantidad inyectada de veneno y no tanto su composición lo que las hace especialmente peligrosas.

Anualmente, entre 30 y 50 personas mueren por picaduras de esta especie en Japón, convirtiéndose en el organismo más mortífero de este país seguido de osos y serpientes venenosas. Una simple picadura puede requerir de atención médica primaria u hospitalización, e incluso en personas no alérgicas puede llegar a causar choques anafilácticos o fallos sistémicos si la dosis de veneno inyectada (resultado de una única picadura o por la suma de varias al mismo tiempo) es suficientemente elevada.

Warning
Señalización para alertar sobre la presencia de V. mandarinia en Enoshima (Kanagawa, Japón). Imagen de Irene Lobato-Vila.

¿Se encuentra actualmente en Occidente?

Vespa mandarinia NO se encuentra en Occidente. Recientemente se confirmó el hallazgo de un único nido de esta especie en la isla de Vancouver, Canadá, el cual fue erradicado según fuentes del Ministerio de Agricultura. Salvo este caso aislado, hoy en día no se han registrado más avistamientos del avispón gigante asiático en Occidente, por lo que todas las supuestas citas de esta especie han sido fruto de identificaciones erróneas.

A pesar de esto, las administraciones se encuentran en alerta, pues de la misma manera que V. velutina se introdujo en Europa en 2004, también podría hacerlo V. mandarinia. Debido a su potencial colonizador y por constituir una amenaza grave para las especies autóctonas y la producción apícola, esta especie fue incluida en el Catálogo Español de Especies exóticas Invasoras a pesar de no encontrarse aún (y esperemos que nunca) en la Península Ibérica.

.          .          .

¿Veremos alguna vez a V. mandarinia en Occidente? Esperemos que no…

Imagen de portada propiedad de Yasunori Koide, CC 3.0.

La vespa asiàtica gegant (Vespa mandarinia): què en sabem?

D’entre els nombrosos organismes exòtics invasors que han arribat a Europa, les vespes asiàtiques es troben dins dels més comentats en xarxes socials i fòrums naturalistes. La vespa asiàtica (Vespa velutina) es va instal·lar a Europa i, posteriorment, a la Península Ibèrica, esdevenint un mal de cap per apicultors i administració en tractar-se d’una espècie molt voraç. Tanmateix, existeix un insecte que preocupa els apicultors occidentals fins i tot més que la vespa asiàtica: la vespa asiàtica gegant (Vespa mandarinia).

Què en sabem, d’aquesta espècie? La seva presència a Occident és real o tan sols el fruit d’identificacions errònies? T’ho expliquem en aquest post.

La vespa asiàtica gegant (Vespa mandarinia): què en sabem?

Durant el meu darrer viatge al Japó el passat mes de setembre, vaig trobar-me cara a cara amb un insecte espectacular: la vespa asiàtica gegant (Vespa mandarinia). Veure-la en directe em va impressionar fins el punt de motivar-me a escriure aquest post.

La vespa asiàtica gegant (Vespa mandarinia) és una espècie d’himenòpter nativa de l’est i sud-est d’Àsia especialment abundant a les zones rurals del Japó. Fins fa poc temps, es considerava que la varietat japonesa pertanyia a una subespècie endèmica pròpia d’aquest país (Vespa mandarinia japonica); aquesta classificació, però, actualment no es considera vàlida.

Es tracta de la vespa (espècie dins del gènere Vespa) més gran del món. Les obreres mesuren entre 3.5 i 4.0 cm, mentre que les reines solen mesurar al voltant de 5.0 o 6.0 cm, fins i tot més en alguns casos puntuals, i presentar una longitud d’ala a ala d’entre 3.5 i 7.5 cm; un monstre en comparació a les vespes asiàtiques (Vespa velutina), que mesuren d’entre 2.0 a 3.0 cm (3.5 cm les reines).

Vespa mandarinia Natural Museum of Natural Science Tokyo
Exemplar de Vespa mandarinia (esquerra) dipositada a l’exposició general del Museu Nacional d’Història Natural de Tokyo, Japó. Imatge de Irene Lobato Vila.

Al Japó, de fet, se les coneix com a オオスズメバチ (oosuzumebachi), el que pot traduir-se com “vespa pardal”.

Com les diferenciem d’altres espècies similars?

La vespa gegant asiàtica és fàcilment recognoscible, i es diferencia d’altres espècies dins del gènere Vespa, per la seva gran mida, presentar un cap completament groc-ataronjat molt fàcil de distingir fins i tot en moviment (el qual contrasta amb la resta del cos, de color més fosc), un clipi ben desenvolupat i una cara en visió frontal molt eixamplada pels costats.

Cara de Vespa mandarinia. Imatge modificada a partir de la original de Gary Alpert, CC 3.0.

A més a més, i a diferència de la vespa asiàtica (V. velutina), presenta les potes més fosques (grogues en V. velutina) i el metasoma o abdomen generalment amb ratlles groc-ataronjades i negres alternades (gairebé negre, amb el quart segment groc, en V. velutina).

Vespa mandarinia male
Vespa mandarinia. Imatge de Yasunori Koide, CC 4.0.

Vespa velutina
Vespa velutina. Imatge de Francis ITHURBURU, CC 3.0.

La vespa asiàtica gegant és molt semblant a la nostra vespa terrera, carnissera o xana (Vespa crabro), present a Europa i introduïda a Amèrica. Tanmateix, es diferencia fàcilment d’aquesta espècie pels trets mencionats anteriorment.

Comparisson Vespa
Vespa mandarinia (adalt), Vespa crabro (abaix a l’esquerra), Vespa vulgaris (abaix al centre) i Vespa germanica (abaix a la dreta). Imatge de @carim_nahaboo a picbear.org.

Al marge del gènere Vespa, tampoc l’hem de confondre amb Megascolia maculata, freqüent a Europa i Pròxim Orient i amb una mida d’entre 2 i 4 cm.

Megascolia maculata. Imatge de gailhampshire, CC 2.0.

Comportament i biologia

Nidificació

La vespa asiàtica gegant és una espècie eusocial (organisme colonial i jeràrquic, amb formes sexuals i asexuals que conviuen alhora i amb una forta cura parental) que nidifica principalment en muntanyes i boscos situats a poca alçada. A més a més, i a diferència de la resta d’espècies dins del gènere Vespa, V. mandarinia construeix els seus nius gairebé exclusivament en cavitats sota terra, rarament en edificis. Aquestes cavitats poden ser excavades per la pròpia vespa, procedir d’espais situats a prop d’arrels putrefactes o bé tractar-se de caus abandonats de rosegadors, serps o altres organismes.

En èpoques de reproducció i nidificació, V. mandarinia es presenta especialment agressiva i territorial, de manera que les obreres no dubtaran a atacar en cas de sentir-se amenaçades. El període de còpula d’aquesta espècie sol tenir lloc a la tardor, de manera que és en aquesta època quan, en cas d’endinsar-nos en territoris de nidificació, hem d’anar amb més cura (durant el nostre ascens al Misen, a l’illa d’Itsukushima (al sud d’Hiroshima), vam trobar una bona quantitat d’aquests vespes… i no semblaven pas gaire contentes de veure’ns allà).

Mount Misen
Camí d’ascens al Misen (Itsukushima, Japó), hàbitat de V. mandarinia. Imatge de Irene Lobato Vila.

Les obreres solen allunyar-se del niu entre 1 i 2 km, podent arribar fins i tot als 8 km. No dubtaran, doncs, en perseguir una possible amenaça diversos quilòmetres en cas de ser necessari.

Alimentació

Vespa mandarinia és molt voraç, més fins i tot que la seva parent V. velutina: s’alimenta d’altres insectes, entre els quals abelles mel·líferes. És, d’altra banda, una espècie dominant en els hàbitats en què es troba, de manera que gairebé no presenta amenaces (excepte el propi ésser humà) i actualment no es tem pel seu estat de conservació.

La seva voracitat és la que la converteix en una espècie especialment problemàtica per a l’apicultura, ja que una sola vespa pot acabar tranquil·lament amb 40 o 50 abelles en un minut. A més a més, és l’única vespa eusocial que realitza atacs grupals contra ruscs d’abelles i altres nius de vespes. Aquests atacs solen dividir-se en tres fases:

  • Fase de caça: obreres solitàries esperen fora del rusc o niu i capturen les preses al vol, les quals són portades per la vespa al seu niu per alimentar les seves pròpies larves. Fase de durabilitat indefinida.
  • Fase de “matança”: entre 2 i 50 vespes es reuneixen davant d’un rusc o niu prèviament marcat químicament per una obrera, i inicien una matança massiva d’abelles o vespes. A diferència de la fase anterior, en aquesta les vespes ignoren els cadàvers de les preses, que es van acumulant. Rarament es produeixen baixes en les files de les vespes, però si els atacs es perllonguen molt en el temps és possible que morin exhaustes o bé de fam.
  • Fase d’ocupació: les vespes passen a defensar el rusc o niu “conquerit”, del qual en capturen les larves per donar de menjar a la seva pròpia progènie i a la reina. Durant l’ocupació, les  vespes passen a ser molt territorials i agressives.

L’abella de la mel europea (Apis mellifera) ha estat àmpliament importada al Japó degut a què la seva espècie nativa (Apis cerana) no és tan productiva. Malauradament, l’abella de la mel europea es troba indefensa davant V. mandarinia en no haver desenvolupat cap sistema defensiu contra aquest voraç depredador, cosa que sí ha fet A. cerana.

Si no, mireu aquest vídeo, el qual ja vam comentar en aquest post:

Picada

Les femelles de V. mandarinia presenten un fibló d’entre 6 mm i 1 cm amb el qual poden injectar una gran quantitat de verí. I és precisament la quantitat injectada de verí i no tant la seva composició el que les fa especialment perilloses.

Anualment, entre 30 i 50 persones moren per picades d’aquesta espècie al Japó, convertint-se en l’organisme més mortífer d’aquest país seguit d’óssos i serps verinoses. Una sola picada pot requerir d’atenció mèdica primària o d’hospitalització, i fins i tot en persones no al·lèrgiques pot arribar a causar xocs anafilàctics si la dosi de verí injectada (resultat d’una única picada o per la suma d’unes quantes) és prou elevada.

Warning
Senyal per alertar sobre la presència de V. mandarinia a Enoshima (Kanagawa, Japó). Imatge de Irene Lobato-Vila.

Es troba actualment a Occident?

Vespa mandarinia NO es troba a Occident. Recentment es va confirmar la troballa d’un únic niu d’aquesta espècie a l’illa de Vancouver, Canadà, el qual va ser eradicat segons fonts del Ministeri d’Agricultura. Llevat d’aquest cas aïllat, avui dia no s’han registrat més albiraments de la vespa asiàtica gegant a Occident, de manera que totes les suposades cites d’aquesta espècie han estat fruit d’identificacions errònies.

Malgrat això, les administracions es troben en alerta, ja que de la mateixa manera que V. velutina es va introduir a Europa el 2004, també podria fer-ho V. mandarinia. A causa del seu potencial colonitzador i pel fet de constituir una amenaça greu per a les espècies autòctones i la producció apícola, aquesta espècie va ser inclosa en el Catàleg espanyol d’espècies exòtiques invasores tot i no trobar-se encara (i esperem que mai) a la Península Ibèrica.

.          .          .

Veurem algun cop V. mandarinia a Occident? Esperem que no…

Imatge de portada de Yasunori Koide, CC 3.0.

Transponable elements: the jumping genes of our genome

In the same way that grasshoppers are jumping and moving through the field, there is a type of genes that jump through our genome and change its position. Our genome is not static, so read on to know everything about these kinds of genes.

THE DISCOVERY OF TRANSPONABLE ELEMENTS

Barbara McClintock discovered transposable elements, or also called mobile genetic elements because of their ability to move around the genome. The “jumping genes,” as this American geneticist christened them, changed the knowledge about genetics so far, since at first the scientific community did not believe in the idea that a DNA sequence could move on its own.

She had a special relationship with corn, a plant domesticated by man for 10,000 years and has become one of the three most cultivated cereals in the world. In addition, it is one of the most important staple foods since from it many derived products are made, such as flours and oils. Its great industrial value has made it have been studied in depth and its genome has been sequenced.

McClintock began studying the DNA of corn and observed that there were a number of genetic sequences that, without knowing how, changed position within the genome. Somehow, these sequences turned on or off the expression of other corn genes and this was observed with the naked eye; the grains of a corn cob could be of different colours (Figure 1), even within the same grain there were areas of various colours. Then McClintock sought the answer of how this was possible if the genes responsible for colour were inherited from the parents. The result was the discovery of the transposable elements, which led her to win the Nobel Prize in Medicine in 1983.

elemento transponible maiz
Figure 1. (A) P gene gives a purple grain. (B) A transponable element is inserted in the middle of the P gen and the grain has no pigmentation. (C) Corn cob wit some grains with P gene intact and others with P gene interrupted by a mobile genetic element. (Source: Porque biotecnología, adaptation)

EFFECTS OF THE CHANGE OF POSITION

When the transposable elements jump and change position they produce a loss of bases when leaving the place where they rested. This loss of some bases does not have “much” importance. But if the transposable element is inserted into a gene, there is an addition of a large number of bases that will cause the loose of gene’s function. For this reason, mobile genetic elements produce mutations because by jumping and changing their location, they alter the DNA sequence and prevent genes from encoding proteins through the genetic code. However, when they jump again, the gene regains its functionality and expresses itself as if nothing had happened.

Often, these jumping genes are considered parasites, because the cell cannot get rid of them. Although they can also bring benefits to the cell, such as transporting advantageous genes. The best known example is not found in humans, but in bacteria and their resistance to antibiotics such as penicillin, discovered by Alexander Fleming. The spread of antibiotic resistance is due to genes that encode enzymes that inactivate them, and that are located in mobile genetic elements. It is usually related to the horizontal transfer of genes, in which they can move from one cell to another as if they were bees that go from flower to flower. When this happens, the transposable element is introduced into a new cell and inserted into the genome of this new cell. That is when it will be faithfully transmitted to its progeny through the normal process of DNA replication and cell division.

TYPES OF TRANSPONABLE ELEMENTS

It is estimated that in the human genome there are 44% transposable elements, which can amount to 66% taking into account repeated fragments and short sequences derived from them. The consequence is that we have more than 1000 genes regulated, directly or indirectly, by sequences from transposable elements.

So far, two types of transposable elements are known: class I transposable elements or retrotransposons and class II transposable elements or DNA transposons. They are classified according to whether they require reverse transcription to jump and transpose or not.

Reverse transcription is similar to the transcription process, but with the difference that it occurs in reverse. That is, if in the classical transcription process a single strand of RNA is obtained from a double strand of DNA, in reverse transcription of an RNA molecule a DNA molecule is obtained. This is common in viruses such as HIV virus (AIDS) or hepatitis virus, but also in some class I transposable elements. These are very abundant and represent 90% of the transposable elements of our genome.

Instead, the others are class II transposable elements or DNA transposons. These are the elements that McClintock discovered in corn, with a 10% representation in our genome and responsible for the spread of antibiotic resistance in bacterial strains.

It should be noted that DNA transposons never use intermediaries, but are autonomous. They jump from one place of the genome to another by themselves, without any help. The mechanism they use is called “cut and paste” and is similar to the cut and paste we use on the computer. The DNA transposon cuts the DNA sequence that has end and look for another place to settle. Then there it also cuts the DNA sequence and is “hooked” (Figure 2).

transposon
Figure 2. Mechanism of cutting and pasting (Source: SITN: science in the news)

It is currently known that the activity of transposable elements is a source of evolutionary innovation due to the generation of mutations, which could have been key both in the development of organisms and in different evolutionary phenomena such as speciation; the process by which a population of a given species gives rise to another or other species.

The vast majority of these mutations are deleterious to organisms, but some of them will lead to adaptive improvement and tend to spread throughout the population. We could put our hand in the fire and we probably wouldn’t burn to ensure that much of the variability that life shows around us originally comes from the displacement of mobile genetic elements or transposable elements.

(Main picture: ABC Canada)

Elementos transponibles: los genes saltarines de nuestro genoma

De la misma manera que los saltamontes van saltando y moviéndose por el campo, existen un tipo de genes que saltan por nuestro genoma y cambian de posición. Nuestro genoma no es estático, así que sigue leyendo para saberlo todo sobre este tipo de genes.

SU DESCUBRIMIENTO

Barbara McClintock fue la descubridora de los elementos transponibles o también llamados elementos genéticos móviles por su capacidad de moverse por el genoma. Los “genes saltarines”, tal y como los bautizó esta genetista americana, cambiaron el conocimiento que se tenía sobre la genética hasta el momento, ya que al principio no se creía en la idea de que una secuencia de ADN se pudiera desplazar por sí sola.

McClintock tenía una relación especial con el maíz, una planta domesticada por el hombre desde hace 10.000 años y que se ha convertido en uno de los tres cereales más cultivados del mundo. Además, es uno de los alimentos básicos más importantes ya que a partir de él se hacen muchos productos derivados, como harinas y aceites. Su gran valor industrial ha hecho que sea haya estudiado en profundidad y se haya secuenciado su genoma.

McClintock empezó a estudiar el ADN del maíz y observó que había una serie de secuencias genéticas que, sin saber cómo, cambiaban de posición dentro del genoma. De alguna manera, estas secuencias encendían o apagaban la expresión de otros genes del maíz y esto se observaba a simple vista; los granos de una mazorca de maíz podían ser de diferentes colores (Figura 1), incluso dentro del mismo grano había zonas de varios colores. Entonces McClintock buscó la respuesta de cómo era esto posible si los genes responsables del color se heredaban de los progenitores. El resultado fue el descubrimiento de los elementos transponibles, que le llevaron a ganar el premio Nobel de Medicina en el 1983.

elemento transponible maiz.png
Figura 1. (A) El gen P da un grano de color púrpura. (B) Un elemento transponible se inserta en medio del gen P y el grano no tiene pigmentación. (C) Mazorca de maíz con algunos granos con el gen P intacto y otros con el gen P interrumpido por un elemento genético móvil (Fuente: Porque biotecnología, adaptación)

EFECTOS DE SU CAMBIO DE POSICIÓN

Cuando los elementos transponibles saltan y cambian de posición producen una pérdida de bases al abandonar el lugar donde reposan. Esta pérdida de algunas bases no tiene “mucha” importancia. Pero si el elemento transponible se inserta en el interior de un gen se produce una adición de una gran cantidad de bases que harán que el gen pierda su función. Por esta razón, los elementos genéticos móviles producen mutaciones porque al saltar y cambiar su localización, alteran la secuencia del ADN e impiden que los genes puedan codificar proteínas mediante el código genético. Sin embargo, cuando vuelven a saltar el gen recupera su funcionalidad y vuelve a expresarse como si nada hubiera pasado.

A menudo, estos genes saltarines son considerados parásitos, ya que la célula no puede deshacerse de ellos. Aunque también pueden aportarle beneficios, como transportar genes ventajosos. El ejemplo que nos resultará más conocido no se encuentra en humanos, sino en las bacterias y su resistencia a los antibióticos como la penicilina, descubierta por Alexander Fleming. La propagación de la resistencia a antibióticos se debe a genes que codifican enzimas que los inactivan, y que se encuentran situadas en los elementos genéticos móviles. Habitualmente se relaciona con la transferencia horizontal de genes, en que se pueden desplazar de una célula a otra como si fueran abejas que van de flor en flor. Cuando esto sucede, el elemento transponible se introduce en una nueva célula y se inserta en el genoma de esta nueva célula. Es entonces cuando será fielmente transmitido a su progenie a través del proceso normal de replicación del ADN y de división celular.

TIPOS DE ELEMENTOS TRANSPONIBLES

Se calcula que en el genoma humano hay un 44% de elementos transponibles, que puede ascender hasta el 66% teniendo en cuenta fragmentos repetidos y secuencias cortas derivadas de ellos. La consecuencia es que tenemos más de 1000 genes regulados, directa o indirectamente, por secuencias procedentes de elementos transponibles.

Hasta el momento se conocen dos tipos de elementos transponibles: los elementos transponibles de clase I o retrotransposones y los elementos transponibles de clase II o transposones de ADN. Se clasifican según si requieren transcripción inversa para saltar y transponerse o no.

La transcripción inversa es similar al proceso de transcripción, pero con la diferencia de que se produce en sentido inverso. Es decir, si en el proceso clásico de transcripción se obtiene una cadena simple de ARN a partir de una doble cadena de ADN, en la transcripción inversa de una molécula de ARN se obtiene una molécula de ADN. Esto es común en virus como el virus del VIH (sida) o el de la hepatitis, pero también en algunos elementos transponibles de clase I. Éstos son muy abundantes y representan el 90% de los elementos transponibles de nuestro genoma.

En cambio, los otros son los elementos transponibles de clase II o transposones de ADN. Se trata de los elementos que descubrió McClintock en el maíz, con una representación del 10% en nuestro genoma y responsables de la diseminación de la resistencia a antibióticos en cepas bacterianas.

Cabe destacar que los transposones de ADN nunca utilizan intermediarios, sino que son autónomos. Saltan de un lugar del genoma a otro por sí mismos, sin ningún tipo de ayuda. El mecanismo que utilizan se llama “cortar y pegar” y es similar al Ctrl+C y Ctrl+V que usamos en el ordenador. El transposón de ADN corta la secuencia de ADN que tiene a extremo y extremo y busca otro sitio donde aposentarse. Entonces allí también corta la secuencia de ADN y se “engancha” (Figura 2).

transposon
Figura 2. Mecanismo de corta y pega del transposón de ADN (Fuente: SITN: Science in the news)

Actualmente se sabe que la actividad de los elementos transponibles es una fuente de innovación evolutiva debido a la generación de mutaciones, que podría haber sido clave tanto en el desarrollo de los organismos como en distintos fenómenos evolutivos como la especiación; el proceso mediante el cual una población de una determinada especie da lugar a otra u otras especies.

La inmensa mayoría de estas mutaciones es deletérea para los organismos, pero algunas de ellas darán lugar a una mejora adaptativa y tenderán a propagarse por la población. Podríamos poner la mano en el fuego y probablemente no nos quemaríamos asegurando que gran parte de la variabilidad que muestra la vida a nuestro alrededor proviene originalmente del desplazamiento de los elementos genéticos móviles o elementos transponibles.

(Foto portada: ABC Canada)

Elements transposables: els gens saltadors del nostre genoma

De la mateixa manera que les llagostes van saltant i movent-se pel camp, existeixen un tipus de gens que salten pel nostre genoma i canvien de posició. El nostre genoma no és estàtic, així que segueix llegint per saber-ho tot sobre aquest tipus de gens.

EL SEU DESCOBRIMENT

Bàrbara McClintock va ser la descobridora dels elements transposables o també anomenats elements genètics mòbils per la seva capacitat de moure’s pel genoma. Els “gens saltadors”, tal i com els batejar aquesta genetista americana, van canviar el coneixement que es tenia sobre la genètica fins el moment, ja que el principio no es creia en la idea que una seqüència d’ADN pogués desplaçar-se per si sola.

McClintock tenia una relació especial amb el blat de moro, una planta domesticada per l’home des de fa 10.000 anys i que s’ha convertit en un dels tres cereals més cultivats al món. A més, és un dels aliments bàsics més importants ja que a partir d’ell es fa productes derivats, com farines i olis. El seu gran valor industrial ha fet que sigui estudiat en profunditat i s’hagi seqüenciat el seu genoma.

McClintock va començar a estudiar l’ADN del blat de moro i va observar una sèrie de seqüències genètiques que, sense saber com, canviaven de posició dins del genoma. D’alguna manera, aquestes seqüències encenien o apagaven l’expressió d’altres gens del blat de moro i això s’observava a simple vista (Figura 1); els grans de la panotxa podien ser de diferents colors, inclús dins del mateix gra hi havia zones de varis colors. Llavors, McClintock va buscar la resposta de com era possible si els gens responsables del color s’heretaven dels progenitors. El resultat va ser el descobriments dels elements transposables, que van fer que guanyés el premi Nobel de Medicina el 1983.

elemento transponible maiz
Figura 1. (A) El gen P dóna un gra de color lila. (B) Un element transposable s’insereix enmig del gen P i el gra no té pigmentació. (C) La panotxa amb alguns gran amb el gen P intacte i altres amb el gen P interromput per un element genètic mòbil (Font: Porque biotecnología, adaptació)

EFECTES DEL CANVI DE POSICIÓ

Quan els elements transposables salten i canvien de posició produeixen una pèrdua de bases a l’abandonar el seu lloc on reposaven. Aquesta pèrdua d’algunes “bases” no té molta importància. Però si l’element transposable s’insereix a l’interior d’un gen es produeix una addició d’una gran quantitat de bases que faran que el gen perdi la seva funció. Per aquesta raó, els elements genètics mòbils produeixen mutacions perquè al saltar i canviar de localització, alteren la seqüència de l’ADN i impedeixen que els gens puguin codificar proteïnes mitjançant el codi genètic. No obstant, quan tornen a saltar el gen recupera la seva funcionalitat i torna a expressar-se com si no hagués passat res.

Sovint aquests gens són considerats paràsits, ja que la cèl·lula no pot desfer-se d’ells. Tot i que també pot aportar-li beneficis, com transportar gens avantatjosos. L’exemple que ens resultarà més conegut no es troba en humans, sinó en els bacteris i la seva resistència als antibiòtics com la penicil·lina, descoberta per Alexander Fleming. La propagació de la resistència a antibiòtics es deu a gens que codifiquen enzims que els inactiven, i que es troben situats en els elements genètics mòbils. Habitualment es relaciona la transferència horitzontal de gens, en què es poden desplaçar d’una cèl·lula a una altra com si fossin abelles que van de flor en flor. Quan això succeeix, l’element transposable s’introdueix a una nova cèl·lula i s’insereix al genoma d’aquesta nova cèl·lula. És llavors quan es transmetrà als seus progenitors a través del procés normal de replicació de l’ADN i de divisió cel·lular.

TIPUS D’ELEMENTS TRANSPOSABLES

Es calcula que en el genoma humà hi ha un 44% d’elements transposables, que pot ascendir fins el 66% tenint en compte fragments repetits i seqüències curtes derivades d’ells. La conseqüència és que tenim més de 1000 gens regulats, directa o indirectament, per seqüències procedents d’elements transposables.

Fins el moment es coneixen dos tipus d’elements transposables: els elements transposables de classe I o retrotransposons i els elements transposables de classe II o transposons d’ADN. Es classifiquen segons si requereixen transcripció inversa per saltar i transposar-se o no.

La transcripció inversa és similar al procés de transcripció, però amb la diferència de que es produeix en sentit invers. És a dir, si en el procés clàssic de transcripció s’obté una cadena simple d’ARN a partir d’una doble cadena d’ADN, en la transcripció inversa d’una molècula d’ARN s’obté una molècula d’ADN. Això és comú en virus com el virus del VIH (sida) o el de l’hepatitis, però també en alguns elements transposables de classe I. Aquests són molt abundants i representen el 90% dels elements transposables del nostre genoma.

En canvi, els altres són els elements transposables de classe II o transposons d’ADN. Es tracta dels elements que va descobrir McClintock en el blat de moro, amb una representació del 10% en el nostre genoma i responsables de la disseminació de la resistència a antibiòtics en soques bacterianes.

Cal destacar que els transposons d’ADN mai utilitzen intermediaris, sinó que són autònoms. Salten d’un lloc del genoma a un altre per si mateixos, sense cap tipus d’ajuda. El mecanisme que utilitzen s’anomena “tallar i enganxar” i és similar al Ctrl+C y Ctrl+V que utilitzem a l’ordinador. El transposó d’ADN talla la seqüència d’ADN que té a extrem i extrem per aposentar-se en un altre lloc. Llavors allà també talla la seqüència d’ADN i s’hi “enganxa” (Figura 2).

transposon
Figura 2. Mecanisme de tallar i enganxar del transposó d’ADN (Font: SITN: Science in the news)

Actualment es coneix que l’activitat dels elements transposables és una font d’innovació evolutiva degut a la generació de mutacions, que podria haver sigut clau tant en el desenvolupament dels organismes com en diferents fenòmens evolutius com la especiació; el procés mitjançant el qual una població d’una determinada espècie dona lloc a una o altres espècies.

La immensa majoria d’aquestes mutacions és deletèria pels organismes, però algunes d’elles donen lloc a una millora adaptativa i tendiran a propagar-se per la població. Podríem posar la mà al foc i probablement no ens cremaríem assegurant que gran part de la variabilitat que mostra la vida al nostre voltant prové originalment del desplaçament dels elements genètics mòbils o elements transposables.

(Foto portada: ABC Canada)

Los mamíferos extinguidos más recientemente debido a los humanos

La historia de la vida está repleta de extinciones de diversos seres vivos, algunas masivas y popularmente conocidas, como la de los dinosaurios. La extinción es un proceso habitual, quizá necesario,  en la evolución biológica. Aun así, la responsabilidad que tenemos la especie humana del elevado ritmo de extinciones en los últimos años es alarmante. Incluso se habla de una nueva era geológica, en la que el planeta a nivel global está cambiando debido a nuestra actividad: el Antropoceno. En este artículo conocerás cuatro mamíferos que existían hace apenas 300 años, pero ya no volveremos a ver nunca más en vivo. ¿O quizá sí?

LOS MAMÍFEROS EXTINGUIDOS MÁS RECIENTEMENTE DEBIDO A LOS HUMANOS

1. EL TILACINO

Empezamos por el tilacino, lobo marsupial o tigre de Tasmania (Thylacinus cynocephalus). Bajo esta variedad de nombres, se encuentra un animal más próximo a los canguros y koalas que a los tigres o lobos: el tilacino era un marsupial originario de Australia.

Uno dels pocos lobos marsupiales que es conservan taxidermizados en el mundo. Museo nacional de Ciencias Naturales, Madrid. Foto: Mireia Querol Rovira

El tilacino era un cazador solitario y crepuscular, que atrapaba a sus presas mediante emboscadas, ya que no era muy veloz. Una característica única era la capacidad que tenía para abrir la boca: las potentes mandíbulas podían abrirse en un ángulo de 120 grados. Obsérvalo en el siguiente vídeo:

De la misma manera que el resto de marsupiales, las crías no nacían directamente, sino que terminaban de desarrollarse en el marsupio (la popularmente conocida como “bolsa”) de la madre.

Extinción y protección del tilacino

El último ejemplar salvaje conocido fue cazado en 1930, y en 1933 murió el último ejemplar cautivo en un zoo, 125 años después de su descripción (1808). Existen diversas hipótesis sobre su extinción:

  • Caza intensiva: Igual que pasa actualmente con el lobo en España, el lobo marsupial fue acusado de matar ganado, por lo que se ofrecían recompensas por animal abatido. Estudios posteriores han concluido que su mandíbula no era lo suficientemente fuerte como para matar una oveja adulta.
  • Reducción del hábitat y de las presas: con la colonización de Australia su hábitat y presas habituales se vieron reducidos.
  • Introducción de especies invasoras y enfermedades: la colonización también suposo la introducción de especies que competían con el tilacino (perros, zorros…) y enfermedades nuevas a las que no estaba inmunizado.

La protección de la especie se aprobó 59 días antes de la muerte del último ejemplar, una ley a todas luces tardía e insuficiente.

Si quieres saber más sobre el tilacino te invitamos a leer el artículo que le dedicamos hace 4 años: El tilacino: nosotros lo extinguimos.

2. LA QUAGGA

La cuaga o quagga (Equus quagga quagga) se trataba de una subespecie de cebra que habitaba las llanuras de Sudáfrica. La mitad anterior del cuerpo poseía las típicas rayas negras y blancas de la cebra, que se iban difuminando para dar lugar a un color marronáceo en su parte posterior, por lo que en un principio se creyó que era una especie separada de la cebra común (Equus quagga). Las patas eran blancas.

Su extraño nombre pertenece a la onomatopeya en la lengua de los Khoi del ruido que hacían las cuagas.

Cuaga quagga disecada ,taxidermia, taxidermy
Cuaga taxidermizada en el Museo de Historia Natural de Bamberg. Solo existen 23 cuagas disecadas en todo el mundo. Foto: Reinhold Möller

Extinción y recuperación de la quagga

El último ejemplar salvaje murió en 1870, y el último en cautividad murió en 1883 en el zoo de Amsterdam, solo 98 años después de su descripción (1785). Aunque la quagga se empezó a cazar por parte de los colonos holandeses para utilizar su carne y piel, la disminución de su población se vio acelerada hasta la extinción ante la caza intensiva para exterminar los animales salvajes de la zona y así utilizar los pastos para el ganado doméstico.

quagga, cuaga, animal extinto
De las pocas fotografías existentes de una quagga, en el zoológico de Londres (1870). Foto: Biodiversity Heritage Library (dominio público)

En su momento no se hizo ningún esfuerzo de conservación. Es más, no se supo que la quagga del zoo de Amsterdam era la última existente. Sin embargo, la quagga tiene el dudoso honor de ser la única especie extinta que ha “vuelto a la vida” gracias a un proyecto llamado The Quagga Project que se inició en 1987. Cuando se descubrió que la quagga no era una especie separada de la cebra, sino una subespecie, se secuenció su ADN y se comparó con el de la cebra. Al fin y al cabo, si eran subespecies, las cebras debían tener en sus genes ADN de las quaggas. Mediante la cría selectiva de cebras con tendencia a la desaparición de las rayas, algunas quaggas se encuentran pastando actualmente en campos del norte de Sudáfrica.

Aunque la primera técnica en la que se piensa para la recuperación de especies extintas es la clonación, en el caso de la quagga ha sido posible mediante la reproducción de cebras seleccionadas gracias al ADN de quagga conservado en su genoma, aunque no sean quaggas 100% idénticas a sus antepasadas extintas.

En este vídeo puedes ver quaggas actuales y el proceso de investigación seguido para “resucitarlas” (subtítulos en inglés):

3. VACA MARINA DE STELLER

La vaca marina de Steller (Hydrodamalis gigas) era un sirenio, es decir, un mamífero marino del mismo orden que los manatís y el dugongo. Se distribuía por el mar de Bering, cerca de Kamchatka (este de Rusia). Medía hasta 8 metros de largo y pesaba 5 toneladas.

vaca marina de steller, steller marine cow, esqueleto, skeleton, model, modelo
Modelo y esqueleto de vaca marina de Steller. Foto: KKPCW

A diferencia del resto de sirenios, que habitan en el océano Índico y parte del Pacífico, la vaca marina de Steller habitaba en aguas frías, poseía menos dientes y era el mejor sirenio adaptado a la vida marina. Era totalmente herbívora (algas y plantas).

Extinción y conservación de la vaca marina de Steller

La vaca marina de Steller posee el triste récord de ser el animal más rápido en extinguirse desde su descubrimiento en 1741: tan solo 27 años. La causa vuelve a ser la caza indiscriminada por parte de  cazadores de focas y balleneros, para lucrarse con la piel, carne y grasa. Sin apenas depredadores, las vacas marinas fueron presas fáciles. No se hizo ningún esfuerzo de conservación de la especie.

Actualmente solo existen unos 20 esqueletos y pocas muestras de piel.

4. RINOCERONTE NEGRO OCCIDENTAL

Terminamos la lista de mamíferos extintos recientemente con el rinoceronte negro occidental (Diceros bicornis longipes), una subespecie del rinoceronte negro. Medía casi 4 metros de largo y podía llegar a pesar 1,3 toneladas. Como todos los rinocerontes, eran herbívoros.

rinoceronte negro occidental, wester black rino, rinoceront negre
Rinoceronte negro occidental. Fuente: savetherhino.org

Extinción y conservación del rinoceronte negro occidental

Habitaba en la sabana del centro-oeste de África hace tan solo 8 años (la UICN lo declaró extinto en 2011). La causas de su extinción fueron:

  • Pérdida de hábitat.
  • Matanzas por parte de granjeros para proteger sus cosechas.
  • Y sobre todo la caza furtiva, principalmente para comercializar con sus cuernos y como trofeos de caza. Los cuernos de los rinocerontes se utilizan en la medicina tradicional china, al que se le atribuyen propiedades medicinales, propiedades sin ninguna evidencia científica. Si quieres conocer más animales amenazados debido a esta actividad, te invitamos a leer Los cinco animales más amenazados por la medicina tradicional china.

De los 850.000 ejemplares censados a principios de siglo XX, entre 1960 y 1995 los furtivos redujeron la población en un 98%. En 2001, solo quedaban 5 rinocerontes vivos. A pesar de las medidas de conservación tomadas a principios del siglo XX, la lucha contra la caza y aplicación de sentencias contra los furtivos fueron decayendo con el tiempo, lo que condujo  a la desaparición de la subespecie.

rinoceronte, rhino
Rinoceronte con el cuerno amputado. Foto: A. Steirn

Otra subespecie de rinoceronte se ha extinguido en los últimos años: el rinoceronte negro del sur (Diceros bicornis bicornis) desapareció en 1850 debido a la caza excesiva y destrucción del hábitat. El resto de subespecies están críticamente amenazadas.

PARA REFLEXIONAR

La lista de animales extintos en época histórica y a causa de la acción humana no deja de crecer. Algunos, como el delfín chino de de río o Baiji (Lipotes vexillifer), se ha declarado extinto en más de una ocasión. Actualmente la UICN lo tiene categorizado como críticamente amenazado-posiblemente extinto, aunque no hay evidencias sólidas de su existencia desde 2007. La vaquita marina (Phocoena sinus) puede ser la siguiente, con solo 12 ejemplares detectados en 2018.

baiji, delfin de rio chino, river dolphin, China, extinct, extinto extingit
Baji fotografiado antes de su muerte en cautividad, 2002. Foto: Institute of Hydrobiology, Wuhan, China

A pesar de que los animales, y sobre todo los mamíferos, contienen las especies más icónicas que la opinión popular quiere conservar, no hay que olvidar el valor biológico de otras especies de animales, plantas, hongos e incluso bacterias de las que deberíamos evitar su extinción.  En un futuro artículo daremos a conocer algunas de estas especies.