Arxiu de la categoria: General

¿Cómo puedes ayudar a la biodiversidad de las ciudades?

Los pueblos y ciudades se han ido volviendo cada vez más en lugares hostiles para la biodiversidad. Afortunadamente, hace unos años que hay un interés cada vez mayor para hacer las ciudades más amigables para la fauna y flora autóctonas. ¡Descubre qué puedes hacer tú para la biodiversidad urbana! 

¿CÓMO PUEDES AYUDAR A LA BIODIVERSIDAD DE LAS CIUDADES?

Según SEO BirdLife, el 10% de las especies de aves que viven en España se albergan en entornos urbanos. De hecho, algunas de ellas, como el gorrión, dependen de la presencia humana. A pesar de eso, estas especies están en declive.

También aseguran que las aves urbanas de España han sufrido una disminución superior al 18% en los últimos 20 años. Para el caso de la golondrina común (Hirundo rustica), la pérdida asciende hasta el 44% de sus individuos.

promocionar biodiversidad urbana, biodiversidad urbana, golondrina común, hirundo rustica, biodiversidad ciudades, fauna ciudades
La golondrina común (Hirundo rustica) ha perdido el 44% de su población urbana (Foto: Ferran Pestaña, Creative Commons).

BENEFICIOS DE LA BIODIVERSIDAD URBANA PARA EL SER HUMANO

Que haya biodiversidad en las ciudades es positivo para los seres humanos, más allá de la función ornamental, ya que ésta ofrece un conjunto de servicios muy importantes que mejoran nuestra calidad de vida. De hecho, la OMS recomienda que en las ciudades haya entre 10 y 15 m2 de superficie verde por cada habitante y que los habitantes tengan un espacio verde a menos de 300 m de su casa.

Además de los beneficios que la naturaleza tiene para la salud y bienestar humanos, los espacios verdes amortiguan la temperatura (importante para reducir el efecto de las islas de calor), purifican el aire y fijan el CO2. También es la responsable de la polinización de cultivos y, en general, de aumentar la resiliencia del entorno.

health benefits of nature, promocionar biodiversidad urbana, biodiversidad urbana, golondrina común, hirundo rustica, biodiversidad ciudades, fauna ciudades
La naturaleza tiene un efecto positivo para la salud y bienestar humano.

¿QUÉ DEBEMOS HACER PARA LA BIODIVERSIDAD URBANA?

A grandes rasgos, para ayudar a la biodiversidad de las urbes, debemos:

  • Proporcionar suficiente verde urbano en las ciudades y que esté distribuido por toda su área.
  • Tener espacios verdes urbanos conectados entre ellos y con el entorno natural.
  • Generar diversidad de hábitats.
  • No plantar especies invasoras.
  • No usar tratamientos químicos.
  • Si las zonas verdes están iluminadas, que no sea molesto para la fauna.

Debemos tener en consideración que, si tenemos gatos en casa, deberemos de plantearnos si vale la pena hacer alguna de las actuaciones que plantearemos, ya que nuestros amigos felinos son grandes depredadores y, más que ayudar a la fauna, podríamos estar perjudicándole.

PLANTAR ÁRBOLES, ARBUSTOS Y FLORES QUE FAVOREZCAN LA BIODIVERSIDAD

Evidentemente, si plantamos árboles o arbustos autóctonos estaremos favoreciendo la biodiversidad de nuestra ciudad. Si no cumplimos este primer punto y plantamos exóticas invasoras estaremos poniendo en entredicho el futuro de nuestra zona. De todas formas, a este hecho hay que sumarle otras consideraciones.

Los árboles o arbustos que produzcan frutos carnosos, como el olivo (Olea europea), el madroño (Arbutus unedo) o el lentisco (Pistacia lentiscus), podrán sustentar una parte de la dieta de algunos animales. El olivo, además, genera agujeros, que podrán servir de nido para algunas aves. Si buscamos especies que tengan frutos en invierno, cuando las condiciones son más difíciles debido a la reducción del alimento, también será de gran ayuda.

promocionar biodiversidad urbana, biodiversidad urbana, biodiversidad ciudades, fauna ciudades, madroño, arbutus unedo
Los árboles con frutos carnosos propiciaran la presencia de alimento para muchos animales (Foto: Creative Commons).

Los árboles de madera blanda, como el chopo (Populus), permitirán que algunas aves, como el pito ibérico (Picus sharpei), hagan agujeros en su tronco, lo que propiciará que al abandonar el nido se puedan instalar otras especies. También podemos dejar árboles muertos secos en pie para que el pito ibérico haga su nido.

Combinar árboles de hoja caduca y perenne permitirá que, a lo largo de todo el año, haya algún refugio para la fauna.

En cuanto a las plantas, es muy recomendable plantar aromáticas autóctonas, estas van a atraer a gran cantidad de insectos polinizadores. En la zona mediterránea, puedes optar por el romero (Rosmarinus officinalis), la lavanda (Lavandula stoechas), la ajedrea (Satureja montana), el tomillo (Thymus vulgaris), la salvia (Salvia officinalis), la albahaca (Ocimum basilicum)…

promocionar biodiversidad urbana, biodiversidad urbana, biodiversidad ciudades, fauna ciudades, lavanda, lavandula stoechas, plantas aromáticas
Las plantas aromáticas van a favorecer la presencia de polinizadores (Foto: Kurt Stüber, Creative Commons).

INSTALA CAJAS NIDO 

Si en las ciudades (y en las zonas naturales) hubiera árboles viejos, no haría falta instalar cajas nido. El motivo es que los árboles viejos tienen agujeros, en los cuales hacen el nido los carboneros, los herrerillos, las lechuzas, etc. Pero no sólo puedes instalar cajas nido para aves, también las puedes hacer para murciélagos, que son eficaces devoradores de mosquitos.

promocionar biodiversidad urbana, biodiversidad urbana, biodiversidad ciudades, fauna ciudades, caja nido, herrerillo comun, Cyanistes caeruleus
Instalar cajas nido va a propiciar la presencia de algunas aves, como el herrerillo común (Cyanistes caeruleus) (Foto: Creative Commons)

Por otro lado, hay animales que utilizan los edificios para criar, como el halcón peregrino (Falco peregrinus), los cernícalos, el cuervo (Corvus corax), el vencejo común (Apus apus)​, la salamanquesa común (Tarentola mauritanica), etc.

En general, en la península Ibérica hay unas 40 especies de aves y una docena de mamíferos que pueden utilizar cajas nido para criar y descansar.

En esta guía de Grup Ecologista Xoriguer y VOLCAM Voluntariado Ambiental encontrarás información sobre cómo construir una caja nido tu mismo/a y algunos otros consejos. ¿Te animas?

CONSTRUYE UN HOTEL DE INSECTOS U OTRAS ESTRUCTURAS PARA LA FAUNA

Un hotel de insectos es una construcción con una estructura de madera que está llena de materiales diversos, como caña natural, piedras, tejas, ladrillos, piñas, madera perforada o paja, los cuales sirven de lugar de escondite, reposo y cría para diversas especies de insectos.

Aunque se pueden comprar ya hechos, nosotros te recomendamos que lo hagas tu mismo con un poco de imaginación. Recopila estos materiales y unos 6-7 palets de madera y empieza a construir un nuevo hogar para abejas solitarias (las solitarias no son agresivas, a diferencia de las coloniales), mariquitas (se comerán el pulgón que tengas en tu jardín o huerto), crisopas, sírfidos…

promocionar biodiversidad urbana, biodiversidad urbana, biodiversidad ciudades, fauna ciudades, hotel insectos, hotel insectos palets
Hotel de insectos hecho con palets (Foto: autor desconocido)

La construcción de espirales de piedra seca con plantas aromáticas también van a favorecer la presencia de fauna, sobre todo de reptiles.

En un rincón de tu jardín, puedes dejar una pila de troncos en forma de pirámide. Verás que en un tiempo estará colonizada por musgos, hongos, insectos xilófagos, lagartijas ibéricas (Podarcis hispanicus), salamanquesas comunes…

TAREAS DE MANTENIMIENTO DE LA VEGETACIÓN

Todo ésto no tiene sentido sin un mantenimiento sostenible de la infraestructura verde. ¿De qué nos sirve plantar árboles con frutos carnosos si luego los podamos en plena fructificación?

Ahí van algunos consejos:

  • No podes en la época en que los árboles están en fruto, concéntralas durante el invierno.
  • Evita podar todos los árboles y arbustos el mismo año.
  • Disminuye el número de podas y pide que éstas sean menos drásticas. Así habrá estructuras que podrán sustentar a nidos de tamaño grande.
  • No retires todas las hojas del suelo, puesto que la hojarasca permite el desarrollo de la fauna invertebrada e incorpora materia orgánica al suelo.
  • No utilices pesticidas ni fitosanitarios químicos. En caso de tener una plaga, utiliza sistemas de lucha biológica contra estas.

PIDE A TU ADMINISTRACIÓN LOCAL QUE SE SUME A LA PROMOCIÓN DE LA BIODIVERSIDAD URBANA

Algunos de estos consejos te serán fáciles de implantar, otros lo serán menos. Además de aplicarlo en tu propia casa, exige a tu administración local que aplique estos principios. ¡Entre todos haremos unos pueblos y ciudades más sostenibles en las que la biodiversidad también pueda vivir!

Además de los puntos ya comentados, las administraciones locales pueden hacer algunas otras tareas que son de su competencia:

  • Naturalizar las laminas de agua. ¿Y si en lugar de tener estanques con el agua cristalina aprovecháramos estos puntos para favorecer la presencia de anfibios, reptiles y vegetación acuática?
  • Cambiar los céspedes por prados naturales. ¿Y si en lugar de tener granes extensiones de césped verde, típicos del norte de Europa (donde el agua es abundante), tuviéramos espacios con diferentes especies de flores autóctonas que atrajeran a gran cantidad de polinizadores y aves? Algunas aves, como el buitrón (Cisticola juncidis) o la trabilla europea (Saxicola rubicola), hacen los nidos en medio de prados.
  • Reducir las siegas de los céspedes (mejor hacerlas a finales de invierno) y hacer siega diferencial. ¿Y si en lugar de segar por completo el césped lo hiciéramos de forma irregular para permitir el crecimiento de vegetación espontanea que atrajera a los invertebrados?
  • Plantar en los alcorques de los árboles. ¿Y si en lugar de tener alcorques llenos de excrementos de perro los tuviéramos llenos de flores que atraigan los insectos que controlasen las plagas del árbol que hay plantado en él?

El Ayuntamiento de Barcelona ha elaborado una completa guía para aplicar buenas prácticas de jardinería para conservar y mejorar la biodiversidad.

¿Te hemos animado a aplicar alguna de las medidas que presentamos? Cuéntanos qué estás haciendo tu para ayudar a la biodiversidad urbana en los comentarios de este artículo.

(Foto de portada: Kevin Cole, Creative Commons)

Anuncis

Com pots ajudar a la biodiversitat de les ciutats?

Els pobles i ciutats s’han anat tornant cada vegada més en llocs hostils per a la biodiversitat. Afortunadament, fa uns anys que hi ha un interès creixent per fer les ciutats més amigables per a la fauna i flora autòctones. Descobreix què pots fer tu per a la biodiversitat urbana!

COM POTS AJUDAR A LA BIODIVERSITAT DE LES CIUTATS?

Segons SEO BirdLife, el 10% de les espècies d’aus que viuen a Espanya viuen en entorns urbans. De fet, algunes d’elles, com el pardal, depenen de la presència humana. Tot i això, aquestes espècies estan en declivi.

També asseguren que les aus urbanes d’Espanya han sofert una disminució superior al 18% en els últims 20 anys. Per al cas de l’oreneta vulgar (Hirundo rustica), la pèrdua ascendeix fins al 44% dels seus individus.

promocionar biodiversidad urbana, biodiversidad urbana, golondrina común, hirundo rustica, biodiversidad ciudades, fauna ciudades
L’oreneta vulgar (Hirundo rustica) ha perdut el 44% de la seva població urbana (Foto: Ferran Pestaña, Creative Commons).

BENEFICIS DE LA BIODIVERSITAT URBANA PER L’ÉSSER HUMÀ

Que hi hagi biodiversitat a les ciutats és positiu per als éssers humans, més enllà de la funció ornamental, ja que aquesta ofereix un conjunt de serveis molt importants que milloren la nostra qualitat de vida. De fet, l’OMS recomana que a les ciutats hi hagi entre 10 i 15 m2 de superfície verda per cada habitant i que els habitants tinguin un espai verd a menys de 300 m de casa seva.

A més dels beneficis que la naturalesa té per a la salut i benestar humans, els espais verds esmorteeixen la temperatura (important per reduir l’efecte de les illes de calor), purifiquen l’aire i fixen el CO2. També és la responsable de la pol·linització de cultius i, en general, d’augmentar la resiliència de l’entorn.

health benefits of nature, promocionar biodiversidad urbana, biodiversidad urbana, golondrina común, hirundo rustica, biodiversidad ciudades, fauna ciudades
La natura té un efecte positiu per a la salut i benestar humà.

QUÈ HEM DE FER PER A LA BIODIVERSITAT URBANA?

A grans trets, per ajudar a la biodiversitat de les urbs, hem de:

  • Proporcionar suficient verd urbà a les ciutats i que estigui distribuït per tota la seva àrea.
  • Tenir espais verds urbans connectats entre ells i amb l’entorn natural.
  • Generar diversitat d’hàbitats.
  • No plantar espècies invasores.
  • No fer servir tractaments químics.
  • Si les zones verdes estan il·luminades, que no sigui molest per a la fauna.

Hem de tenir en consideració que, si tenim gats a casa, haurem de plantejar-nos si val la pena fer alguna de les actuacions que plantejarem, ja que els nostres amics felins són grans depredadors i, més que ajudar a la fauna, la podríem estar perjudicant.

PLANTA ARBRES, ARBUSTS I FLORS QUE AFAVOREIXIN LA BIODIVERSITAT

Evidentment, si plantem arbres o arbustos autòctons estarem afavorint la biodiversitat de la nostra ciutat. Si no complim aquest primer punt i plantem exòtiques invasores estarem posant en perill el futur de la nostra zona. De tota manera, a aquest fet cal sumar-li altres consideracions.

Els arbres o arbusts que produeixin fruits carnosos, com l’olivera (Olea europea), l’arboç (Arbutus unedo) o el llentiscle (Pistacia lentiscus), podran sustentar una part de la dieta d’alguns animals. L’olivera, a més, genera forats, que podran servir de niu per a algunes aus. Si busquem espècies que tinguin fruits a l’hivern, quan les condicions són més difícils a causa de la reducció de l’aliment, també serà de gran ajuda.

promocionar biodiversidad urbana, biodiversidad urbana, biodiversidad ciudades, fauna ciudades, madroño, arbutus unedo
Els arbres amb fruits carnosos propicien la presència d’aliment per a molts animals (Foto: Creative Commons).

Els arbres de fusta tova, com el pollancre (Populus), permetran que algunes aus, com el picot (Picus sharpei), facin forats en el seu tronc, el que propiciarà que a l’abandonar el niu es puguin instal·lar altres espècies. També podem deixar arbres morts secs en peu perquè el picot hi faci el seu niu.

Combinar arbres de fulla caduca i perenne permetrà que, al llarg de tot l’any, hi hagi algun refugi per a la fauna.

Pel que fa a les plantes, és molt recomanable plantar aromàtiques autòctones, aquestes atrauran gran quantitat d’insectes pol·linitzadors. A la zona mediterrània, pots optar pel romaní (Rosmarinus officinalis), l’espígol (Lavandula stoechas), la sajolida (Satureja montana), el timó o farigola (Thymus vulgaris), la sàlvia (Salvia officinalis), l’alfàbrega (Ocimum basilicum)…

promocionar biodiversidad urbana, biodiversidad urbana, biodiversidad ciudades, fauna ciudades, lavanda, lavandula stoechas, plantas aromáticas
Les plantes aromàtiques afavoriran la presencia de pol·linitzadors (Foto: Kurt Stüber, Creative Commons).

INSTAL·LA CAIXES NIU

Si a les ciutats (i a les zones naturals) hagués arbres vells, no caldria instal·lar caixes niu. El motiu és que els arbres vells tenen forats, en els quals fan el niu els carboners, les mallerengues, les òlibes, etc. Però no només pots instal·lar caixes niu per a aus, també les pots fer per a ratpenats, que són eficaços devoradors de mosquits.

promocionar biodiversidad urbana, biodiversidad urbana, biodiversidad ciudades, fauna ciudades, caja nido, herrerillo comun, Cyanistes caeruleus
Instal·lar caixes niu propiciarà la presència d’algunes aus, com la mallerenga blava (Cyanistes caeruleus) (Foto: Creative Commons)

D’altra banda, hi ha animals que utilitzen els edificis per criar, com el falcó pelegrí (Falco peregrinus), els xoriguers, el corb (Corvus corax), el falciot negre (Apus apus), el dragó comú (Tarentola mauritanica), etc.

En general, a la península Ibèrica hi ha unes 40 espècies d’aus i una dotzena de mamífers que poden utilitzar caixes niu per criar i descansar.

A la següent guia del Grup Ecologista Xoriguer i VOLCAM Voluntariado Ambiental trobaràs informació sobre com construir una caixa niu tu mateix/a i alguns altres consells. T’animes?

CONSTRUEIX UN HOTEL D’INSECTES O ALTRES ESTRUCTURES PER A LA FAUNA

Un hotel d’insectes és una construcció amb una estructura de fusta que està plena de materials diversos, com canya natural, pedres, teules, maons, pinyes, fusta perforada o palla, els quals serveixen de lloc d’amagatall, repòs i cria per a diverses espècies d’insectes.

Tot i que es poden comprar ja fets, nosaltres et recomanem que ho facis tu mateix amb una mica d’imaginació. Recull aquests materials i uns 6-7 palets de fusta i comença a construir una nova llar per a abelles solitàries (les solitàries no són agressives, a diferència de les colonials), marietes (es menjaran el pugó que tinguis al teu jardí o hort), crisopes, sírfids…

promocionar biodiversidad urbana, biodiversidad urbana, biodiversidad ciudades, fauna ciudades, hotel insectos, hotel insectos palets
Hotel d’insectes fet amb palets (Foto: autor desconocido)

La construcció d’espirals de pedra seca amb plantes aromàtiques també afavorirà la presència de fauna, sobretot de rèptils.

En un racó del teu jardí, pots deixar una pila de troncs en forma de piràmide. Veuràs que en un temps estarà colonitzada per molses, fongs, insectes xilòfags, sargantanes ibèriques (Podarcis hispanicus), dragons comuns…

TASQUES DE MANTENIMENT DE LA VEGETACIÓ

Tot això no té sentit sense un manteniment sostenible de la infraestructura verda. De què ens serveix plantar arbres amb fruits carnosos si després els podem en plena fructificació?

Aquí et donem alguns consells:

  • No podis en l’època en què els arbres estan en fruit, concentra aquestes tasques durant l’hivern.
  • Evita podar tots els arbres i arbusts el mateix any.
  • Disminueix el nombre de podes i demana que aquestes siguin menys dràstiques. Així hi haurà estructures que podran sustentar a nius de mida gran.
  • No retiris totes les fulles del sòl, ja que la fullaraca permet el desenvolupament de la fauna invertebrada i incorpora matèria orgànica al sòl.
  • No utilitzis pesticides ni fitosanitaris químics. En cas de tenir una plaga, utilitza sistemes de lluita biològica contra aquestes.

DEMANA A LA TEVA ADMINISTRACIÓ LOCAL QUE SE SUMI A LA PROMOCIÓ DE LA BIODIVERSITAT URBANA

Alguns d’aquests consells et seran fàcils d’implantar, altres ho seran menys. A més d’aplicar-los a casa teva, exigeix a la teva administració local que apliqui aquests principis. Entre tots farem uns pobles i ciutats més sostenibles en les que la biodiversitat també hi pugui viure!

A més dels punts ja comentats, les administracions locals poden fer algunes altres tasques que són de la seva competència:

  • Naturalitzar les làmines d’aigua. I si en lloc de tenir estanys amb l’aigua cristal·lina aprofitéssim aquests punts per afavorir la presència d’amfibis, rèptils i vegetació aquàtica?
  • Canviar les gespes per prats naturals. I si en lloc de tenir grans extensions de gespa verda, típics del nord d’Europa (on l’aigua és abundant), tinguéssim espais amb diferents espècies de flors autòctones que atraguessin a gran quantitat de pol·linitzadors i aus? Algunes aus, com el trist (Cisticola juncidis) o el bitxac comú (Saxicola rubicola), fan els nius enmig de prats.
  • Reduir les segues de les gespes (millor fer-les a finals d’hivern) i fer sega diferencial. I si en lloc de segar per complet la gespa ho féssim de forma irregular per permetre el creixement de vegetació espontània que atragués als invertebrats?
  • Plantar en els escocells dels arbres. I si en lloc de tenir escocells plens d’excrements de gos els tinguéssim plens de flors que atreguin els insectes que controlessin les plagues de l’arbre que hi ha plantat en ell?

L’Ajuntament de Barcelona ha elaborat una completa guia per aplicar bones pràctiques de jardineria per a conservar i millorar la biodiversitat.

T’hem animat a aplicar alguna de les mesures que presentem? Explica’ns què estàs fent tu per ajudar a la biodiversitat urbana als comentaris d’aquest article.

(Foto de portada: Kevin Cole, Creative Commons)

Insects feel through their antennae

Insects perceive their surroundings through different organs, among which antennae are some of the most important. Antennae appear in a lot of incredibly diverse shapes and sizes, and every group of insects develops one or more models. We encourage you to know more about their origin, functions and diversity through this post.

The origin of antennae

Antennae are paired sensorial appendages located in the anterior parts of insects’ body. Except for chelicerates (spiders, scorpions…) and proturans (non-insect hexapods), all arthropods, either crustaceans, hexapods (diplurans, springtails -Collembola- and insects), myriapods (centipedes and millipedes) and the extinct trilobites, have antennae when being adults.

In crustaceans, antennae appear in the two first head segments: a first pair known as primary antennae or antennules, and a longer second pair known as secondary antennae or just antennae. Usually, secondary antennae are biramous (that is, they have two main branches), even though some crustaceans have undergone ulterior modifications so antennae appear as uniramous appendages (with a single branch) or even get reduced.

Types of antennae in crustaceans. Picture obtained from Wikipedia (link).

However, the rest of arthropods only have a single pair of uniramous antennae. Hexapods (like insects), which seem to be closely related to crustaceans according to the pancrustacean model, seem to have just preserved the secondary pair of antennae typical of crustaceans.

According to some authors, antennae appear to be true appendages; that is, they would start to develop during the embryological development from a head segment the same way legs do. However, this segment would have evolved into a reduced and inconspicuous piece, now being unappreciable. Moreover, antennae can also regenerate like legs.

How do insects feel through antennae?

So, what does this title exactly mean?

Antennae are microscopically covered with tiny hairs known as sensilla, which are not related with hairs found in vertebrates since they are made of chitin (as the rest of insect’s cuticle) instead of keratin.

Picture above: antennae under electronic microscope. Picture below: detail of the sensilla. Both images taken from cronodon.com.

Despite being almost identical at the first sight, there are different types of sensilla: chemoreceptorial sensilla have an inner channel through which suspended molecules enter (e.g. pheromones), while mechanoreceptorial sensilla are retractable and move at the slightest pressure or when the insect changes its position with respect to the ground (in this case, these are called proprioceptor sensilla).

So, insects taste, smell, touch and communicate in part through antennae, thus allowing them to gather information about food sources, potential mates (pheromones), enemies, dangerous substances (e. g. a poisonous plant), nesting places and migratory routes (as in the case of the monarch butterfly). Other organs, such as legs, palpi and even the ovipositor (organ for laying eggs) sometimes have sensorial cells.

Inside and in the base of sensilla there are sensorial neurons connected to the insect’s brain; specifically, a brain region known as deutocerebrum. In chemoreceptorial sensilla, molecules bind with specific receptors that send nervous signals to the antennal lobe through the sensorial neurons. This lobe is somewhat like the olfactory bulb found in vertebrates.

Types of antennae in hexapods

Except for the proturans, which are wingless hexapods, diplurans, springtails (collembola) and insects develop different types of antennae. These are divided in two main groups:

  • Segmented antennae: springtails and diplurans. Each segment has an own set of muscles that moves it independently from the rest of the antenna.
  • Flagellate antennae: insects. Just the first segment located at the base of antennae in contact with the insect’s head (the scapus) has an own set of muscles, so the antennal movement depends entirely on this segment.

Parts of insects’ antennae

The three basic segments of insects’ antennae are the following:

Antenna of an inquiline wasp belonging to the genus Synergus (Hymenoptera). Picture by Irene Lobato.

1) Scape: basal segment that articulates with the insect’s head and the only one that has an own set of muscles. The scape is mounted in a socket called torulus.

2) Pedicel: the second antennal segment or the one that comes just after the scape. This segment has a relevant role since it contains the Johnston’s organ, which is a collection of sensory cells. This organ is absent in non-insect hexapods (springtails, diplurans).

3) Flagellum: the rest of antennal segments that form the antennae, which are individually known as flagellomeres. These flagellomeres are connected by thin membranes that allow them to move as a whole despite not having muscles.

Thousands of antennae!

From this basic pattern (scape + pedicel + flagellum), each group has developed numerous antennal models based on their lifestyle:

  • Aristate

These are very reduced antennae with a pouch-like shape and a small bristle that emerges from its third modified segment.

Example: a very extended model among flies (Diptera).

Left: picture by M. A. Broussard, CC 4.0; right: picture of a fly of the family Sarcophagidae by JJ Harrison, CC 1.0.
  • Capitate

Capitate antennae have a club or knob at their ends.

Example: usually found in butterflies (Lepidoptera) and in some beetles (Coleoptera).

Left: picture by M. A. Broussard, CC 4.0; middle: picture of a beetle of the species Platysoma moluccanum by Udo Schmidt, CC 2.0; left: a butterfly, public domain.
  • Clavate

Unlike the capitate ones, clavate antennae get progressively thicker in their ends.

Example: moths (Lepidoptera), carrion beetles (Silphidae, Coleoptera).

Left: picture by M. A. Broussard, CC 4.0; right: beetle of the species Thanatophilus sinuatus (Silphidae) by Wim Rubers, CC 3.0.
  • Filiform

This is the simplest model of antennae: long, thin and made of equally sized and shaped segments.

Example: cockroaches (Blattodea), crickets and grasshoppers (Orthoptera), longhorn beetles (Cerambycidae, Coleoptera), bugs (Heteroptera).

Left: picture by M. A. Broussard, CC 4.0; right: cockroach of the species Periplaneta americana by Gary Alpert, CC 3.0.
  • Flabellate

These are quite similar to pectinate and lamellate antennae (see below), but with thinner and flattener segments that make them to look like a folding paper fan; also, these thin projections occupy all the antenna, and not only the terminal segments as in lamellate antennae. This model is found in males of some insects, thus having a large surface for detecting pheromones.

Example: beetles (Coleoptera), wasps (Hymenoptera) and moths (Lepidoptera).

Beetle male of the genus Rhipicera. Picture by Jean and Fred, CC 2.0.
  • Geniculate

These are bent, almost like a knee joint. The first antennal segment (scape) is usually located before the joint. The rest of segments together are known as funicle.

Example: some bees and wasps, especially in chalcid wasps (Hymenoptera), weevils (Curculionidae, Coleoptera).

Left: picture by M. A. Broussard, CC 4.0; right: picture of a parasitoid wasps of the species Trissolcus mitsukurii, public domain.
  • Lamellate

The terminal segments enlarge to one side in form of flat and nested projections, thus looking like a folding fan.

Example: beetles of the family Scarabaeidae (Coleoptera).

Left: picture by M. A. Broussard, CC 4.0; right: picture of a beetle of the family Scarabeidae, public domain.
  • Moniliform

Unlike filiform antennae, the segments of moniliform antennae are more or less spherical and equally sized, thus giving these antennae a string of bead appearance.

Example: termites (Isoptera), some beetles (Coleoptera).

Left: picture by M. A. Broussard, CC 4.0; right: picture of a termite by Sanjay Acharya, CC 4.0.
  • Pectinate

Segments have a lateral projection, so they look like combs.

Example: sawflies (Symphyta, Hymenoptera), parasitoid wasps (Hymenoptera), some beetles (Coleoptera).

Left: picture by M. A. Broussard, CC 4.0; right: picture of a beetle of the family Lycidae by John Flannery, CC 2.0.
  • Plumose

Plumose antennae look like feathers as their segments have numerous thin branches. Having a bigger antennal surface allows them to detect more suspended molecules, like pheromones.

Example: mosquito (Diptera) and moth (Lepidoptera) males.

Left: picture by M. A. Broussard, CC 4.0; right: moth male of the genus Polyphemus by Megan McCarty, CC 3.0.
  • Serrate

Each segment is angled or notched on one side, thus making these antennae to look like saws.

Example: some beetles (Coleoptera).

Left: picture by M. A. Broussard, CC 4.0; right: picture of a beetle of the family Chrysomelidae by John Flannery, CC 2.0.
  • Setaceous

These antennae are bristle-shaped, being thinner and longer in their ends. They are quite similar to filiform antennae, but thinner.

Example: mayflies (Ephemeroptera), dragonflies and damselflies (Odonata).

Left: picture by M. A. Broussard, CC 4.0; right: picture of a dragonfly, public domain.
  • Stylate

Similar to filiform antennae, but the terminal segments are pointed and slender, looking like a style. The style can either have bristles or not.

Example: brachycerous flies (Diptera).

Left: picture by M. A. Broussard, CC 4.0; right: picture of a brachycerous fly of the family Asilidae by Opoterser, CC 3.0.

You can read more about the different antennal models here and here, or take a look to the antennal gallery by John Flannery.

Main picture by Jean and Fred, CC 2.0.

.         .         .

If you know more antennal models or curious facts about insects’ antennae, feel free to share it with us by leaving a comment below!

Los insectos sienten a través de las antenas

Los insectos perciben su entorno a través de distintos órganos; entre ellos, las antenas. Las hay de distintas formas y tamaños, y cada grupo presenta unos determinados modelos (algunos con formas realmente sorprendentes). Os invitamos a conocer su origen, funciones y diversidad a través de este artículo.

El origen de las antenas

Las antenas son apéndices pares con función sensorial situados en la parte anterior del cuerpo de los artrópodos. A excepción de los quelicerados (arañas, escorpiones…) y los proturos (grupo dentro de los hexápodos no-insectos), todos los artrópodos, ya sean crustáceos, hexápodos (dipluros, colémbolos e insectos), miriápodos (ciempiés, milpiés) y los extintos trilobites, presentan antenas en su fase adulta.

En los crustáceos, las antenas aparecen en los dos primeros segmentos de la cabeza: un primer par, conocidas como antenas primarias o anténulas, y un segundo par más largas conocidas como antenas secundarias o simplemente antenas. Por lo general, las antenas secundarias son birramias (se dividen en dos ramas principales), aunque algunos grupos de crustáceos han sufrido modificaciones y las presentan uniramias (una sola rama) o reducidas.

Tipos de antenas en los crustáceos. Imagen extraída de Wikipedia (link).

En cambio, el resto de artrópodos tan sólo presenta un par de antenas unirramias. Los hexápodos (como los insectos), los cuales estarían muy emparentados con los crustáceos formando el grupo de los pancrustáceos según apoyan diversos estudios moleculares, sólo habrían conservado el par secundario de antenas propio de los crustáceos.

Según algunos autores, las antenas son verdaderos apéndices; es decir, se formarían durante el desarrollo embrionario a partir de un segmento corporal igual que lo hacen las patas. Sin embargo, este segmento situado en la cabeza habría evolucionado hasta quedar reducido y desplazado, siendo ahora indetectable. Además, y de igual manera que las patas, las antenas también pueden regenerase.

¿Cómo sienten los insectos a través de las antenas?

Y bien, ¿qué quiere decir exactamente este título?

Microscópicamente, las antenas están cubiertas de pequeños pelos que reciben el nombre de sensilas y que nada tienen que ver con el pelo de los mamíferos, pues se componen de quitina (y no de queratina) igual que el resto del cuerpo del insecto.

Imagen de arriba: antena bajo microscopio electrónico. Imagen de abajo: detalle de los diferentes tipos de sensilas. Ambas imágenes extraídas de cronodon.com.

Aunque a simple vista puedan parecer idénticas, existen diferentes tipos de sensilas: las quimioreceptoras presentan un canal en su interior a través del cual captan distintas moléculas que se encuentran en el ambiente (olor, sabor, e incluso feromonas), mientras que las mecanoreceptoras son retráctiles y se hunden al menor contacto o roce (chocar con un obstáculo, viento, etc.) o al cambiar de posición respecto al suelo (en este caso, reciben el nombre de propioceptores).

Es decir, los insectos saborean, huelen, sienten el tacto y se comunican en parte a través de las antenas, lo que les permite recabar información acerca de fuentes de alimento, parejas potenciales (feromonas), enemigos, sustancias peligrosas (por ejemplo, una planta tóxica), lugares donde anidar o rutas migratorias (como en el caso de la mariposa monarca, la cual obtiene mucha información sobre la ruta a seguir a través de las antenas). Otros órganos, como las patas, los palpos e incluso a veces el ovopositor (órgano para depositar los huevos), también contienen células sensoriales.

En el interior y en la base de estas sensilas, existen neuronas sensoriales que conectan con el cerebro; concretamente, una parte conocida como deutocerebro. En el caso de las sensilas quimioreceptoras, las moléculas se unen a unos receptores específicos que envían señales nerviosas a través de estas neuronas al centro cerebral encargado de procesar esta información: el lóbulo antenal. Este lóbulo sería similar al bulbo olfatorio de los vertebrados.

Tipos de antenas en los hexápodos

A excepción de los proturos, que no presentan antenas, los dipluros, los colémbolos y los insectos (hexápodos) desarrollan diferentes tipos de antenas. Éstas se dividen en dos grupos:

  • Antenas de tipo segmentado: colémbolos y dipluros. Cada segmento de la antena presenta un juego muscular que lo mueve de forma independiente.
  • Antenas de tipo anillado o flagelado: insectos. Únicamente el primer segmento situado en la base en unión con la cabeza (el escapo) presenta musculatura propia, por lo que el movimiento de toda la antena depende completamente de esta pieza.

Partes de las antenas en los insectos

Los tres elementos básicos que forman las antenas de los insectos son:

Antena de una avispa inquilina del género Synergus (Hymenoptera). Imagen de Irene Lobato.

1) Escapo: segmento basal que articula con la cabeza y el único con musculatura propia. El espacio situado en la cabeza donde se ancla el escapo recibe el nombre de torulus.

2) Pedicelo: segundo segmento antenal después del escapo. Este segmento es de vital importancia en los insectos dado que en su interior se localiza el órgano de Johnston, un conjunto de células sensoriales. Este órgano está ausente en los hexápodos no-insectos (colémbolos, dipluros).

3) Flagelo: conjunto del resto de segmentos que forman la antena, y que individualmente reciben el nombre de flagelómeros. Dichos flagelómeros están conectados por membranas que permiten su movimiento a pesar de no tener musculatura propia.

¡Mil y una formas de antenas!

A partir de este patrón base (escapo + pedicelo + flagelo), cada grupo de insectos ha desarrollado una o más formas de antenas en función de su forma de vida:

  • Aristadas

Son antenas muy reducidas en forma de saco y una cerca o arista plumosa que nace de su segmento terminal.

Ejemplo: modelo muy extendido entre las moscas (Diptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: imagen de una mosca de la familia Sarcophagidae de JJ Harrison, CC 1.0.
  • Aserradas

Cada segmento presenta un lateral anguloso o puntiagudo que da a la antena un aspecto de sierra.

Ejemplo: algunos escarabajos (Coleoptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: imagen de un escarabajo de la familia Chrysomelidae de John Flannery, CC 2.0.
  • Capitadas

Las antenas capitadas se ensanchan abruptamente en su extremo.

Ejemplo: mariposas (Lepidoptera), algunos escarabajos (Coleoptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; centro: imagen de un escarabajo de la especie Platysoma moluccanum de Udo Schmidt, CC 2.0; izquierda: mariposa, dominio público.
  • Claviformes

A diferencia de las anteriores, las antenas claviformes se hacen progresivamente más gruesas en su extremo.

Ejemplo: polillas (Lepidoptera), escarabajos enterradores (coleópteros carroñeros de la familia Silphidae).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: escarabajo de la especie Thanatophilus sinuatus (Silphidae) de Wim Rubers, CC 3.0.
  • Estiladas

Similar a las antenas filiformes (ver más abajo), pero con la diferencia que los segmentos terminales se estrechan repentinamente en forma de hilo fino y puntiagudo (el “estilo”), pudiendo presentar setas (pelos) o no.

Ejemplo: moscas braquíceras (Diptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: imagen de un díptero braquícero de la familia Asilidae de Opoterser, CC 3.0.
  • Filiformes

Es la forma más simple de antenas: alargadas, delgadas y con segmentos de tamaño y forma prácticamente idénticos.

Ejemplo: cucarachas (Blattodea), saltamontes y grillos (Orthoptera), escarabajos longicornes (Cerambycidae, Coleoptera), chinches (Heteroptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: cucaracha de la especie Periplaneta americana de Gary Alpert, CC 3.0.
  • Flabeladas

De aspecto similar a las antenas pectinadas y a las lameladas (ver más adelante), pero con la diferencia de que las proyecciones laterales de los segmentos son mucho más finas y aplanadas, con un aspecto similar a un abanico de papel y ocupan toda la antena (no sólo los últimos segmentos como en las lameladas). Los machos presentan este tipo de antenas para aumentar la superficie que capta feromonas.

Ejemplo: escarabajos (Coleoptera), avispas (Hymenoptera) y polillas (Lepidoptera).

Macho de escarabajo del género Rhipicera. Imagen de Jean and Fred, CC 2.0.
  • Geniculadas

Presentan una doblez o articulación, hecho que da a la antena un aspecto de articulación de rodilla. El primer segmento antenal (escapo) suele estar antes de la articulación, tras la cual vendrían el resto de segmentos que, en este caso, reciben en conjunto el nombre de funículo.

Ejemplo: algunas abejas y avispas, muy marcado en parasitoides (Hymenoptera), escarabajos curculiónidos (Curculionidae, Coleoptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: imagen de una avispa parasitoide de la especie Trissolcus mitsukurii, dominio público.
  • Lameladas

Los segmentos terminales se alargan hacia uno de los laterales formando unas proyecciones aplanadas que encajan unas con otras, lo que da a estas antenas un aspecto de abanico.

Ejemplo: escarabajos de la familia Scarabaeidae (Coleoptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: imagen de un coleóptero de la familia Scarabeidae de dominio público.
  • Moniliformes

A diferencia de las antenas filiformes, los segmentos antenales son más o menos redondos y de tamaño similar, lo que da a la antena un aspecto de collar de perlas.

Ejemplo: termitas (Isoptera), algunos escarabajos (Coleoptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: imagen de una termita de Sanjay Acharya, CC 4.0.
  • Pectinadas

Los segmentos son alargados en un lateral, dando a la antena un aspecto de peine.

Ejemplo: sínfitos o moscas portasierra (Hymenoptera), avispas parasitoides (Hymenoptera), algunos escarabajos (Coleoptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: imagen de un coleóptero de la familia Lycidae de John Flannery, CC 2.0.
  • Plumosas

Como su nombre indica, estas antenas parecen plumas, puesto que sus segmentos presentan ramificaciones finas. Al aumentar la superficie antenal, aumenta la capacidad para detectar moléculas en suspensión, como es el caso de las feromonas.

Ejemplo: machos de mosquito (Diptera) y de polilla (Lepidoptera).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: macho de una polilla del género Polyphemus de Megan McCarty, CC 3.0.
  • Setiformes

Estas antenas tienen forma de cerda, siendo alargadas y más estrechas hacia su extremo. Similares a las filiformes, pero más finas.

Ejemplo: efemerópteros (Ephemeroptera), libélulas y caballitos del diablo (Odonata).

Izquierda: imagen de M. A. Broussard, CC 4.0; derecha: imagen de una libélula, dominio público.

Puedes leer más sobre ellas en este y este enlace, o ver la galería de fotografías de antenas de John Flannery.

Imagen de portada de Jean and Fred, CC 2.0.

.         .         .

Si conoces más tipos de antenas o alguna curiosidad acerca de sus funciones, ¡no dudes en dejar un comentario!

Els insectes senten a través de les antenes

Els insectes perceben el seu entorn a través de diferents òrgans; entre ells, les antenes. N’hi ha de diferents formes i mides, i cada grup en presenta uns determinats models (alguns amb formes realment sorprenents). Us convidem a conèixer el seu origen, funcions i diversitat a través d’aquest article.

L’origen de les antenes

Les antenes són apèndixs parells amb funció sensorial situats a la part anterior del cos dels artròpodes. A excepció dels quelicerats (aranyes, escorpins …) i dels proturs (grup dins dels hexàpodes no-insectes), tots els artròpodes, ja siguin crustacis, hexàpodes (diplurs, col·lèmbols i insectes), miriàpodes (centpeus, milpeus) i els extints trilòbits, presenten antenes en la seva fase adulta.

En els crustacis, les antenes apareixen en els dos primers segments del cap: un primer parell, conegudes com antenes primàries o antènules, i un segon parell més llargues conegudes com antenes secundàries o simplement antenes. En general, les antenes secundàries són birràmies (es divideixen en dues branques principals), encara que alguns grups de crustacis han patit modificacions i les tenen unirràmies (una sola branca) o reduïdes.

Tipus d’antenes en els crustacis. Imatge extreta de Wikipedia (link).

En canvi, la resta d’artròpodes tan sols presenta un parell d’antenes unirràmies. Els hexàpodes (com els insectes), els quals estarien emparentats amb els crustacis formant el grup dels pancrustacis segons recolzen diversos estudis moleculars, només haurien conservat el parell secundari d’antenes propi dels crustacis.

Segons alguns autors, les antenes són veritables apèndixs; és a dir, es formarien durant el desenvolupament embrionari a partir d’un segment corporal d’igual manera que les potes. Tanmateix, aquest segment situat al cap hauria evolucionat fins a quedar reduït i desplaçat, essent ara indetectable. A més a més, i d’igual forma que les potes, les antenes també poden regenerar-se.

Com senten els insectes a través de les antenes?

Què vol dir exactament aquest títol?

Microscòpicament parlant, les antenes estan cobertes de petits pèls anomenats sensil·les, les quals no tenen res a veure amb els pèl que cobreixen el cos dels mamífers atès que es componen de quitina (i no de queratina) d’igual manera que la resta del cos de l’insecte.

Imatge de dalt: antena sota microscopi electrònic. Imatge de baix: detall dels diferents tipus de sensil·les. Ambdues imatges extretes de cronodon.com.

Malgrat que a primer cop d’ull puguin semblar idèntiques, existeixen diferents tipus de sensil·les: les quimioreceptores presenten un canal al seu interior a través del qual capten molècules que es troben en suspensió (olor, gust, i fins i tot feromones), mentre que les mecanoreceptores són retràctils i s’enfonsen davant qualsevol contacte o fregament (xocar amb un obstacle, vent, etc.) o en canviar de posició respecte al terra (en aquest cas, reben el nom de propioceptors).

És a dir, els insectes assaboreixen, oloren, senten el tacte i es comuniquen en part a través de les antenes, fet que els permet obtenir informació sobre fonts d’aliment, potencials parelles (feromones), enemics, substàncies perilloses (per exemple, una planta tòxica), llocs on niar o rutes migratòries (com en el cas de la papallona monarca, la qual obté molta informació sobre la ruta a seguir a través de les antenes). Altres òrgans, com les potes, els palps i fins i tot de vegades l’ovopositor (òrgan per dipositar els ous), també contenen cèl·lules sensorials.

A l’interior i a la base d’aquestes sensilas, hi ha neurones sensorials que connecten amb el cervell; concretament, amb una part coneguda com deutocervell. En el cas de les sensil·les quimioreceptores, les molècules s’uneixen a uns receptors específics que envien senyals nerviosos a través d’aquestes neurones al centre cerebral encarregat de processar aquesta informació: el lòbul antenal. Aquest lòbul seria similar al bulb olfactori dels vertebrats.

Tipus d’antenes en els hexàpodes

A excepció dels proturs, que no presenten antenes, els diplurs, els col·lèmbols i els insectes (hexàpodes) tenen diferents tipus d’antenes. Aquestes es divideixen en dos grups:

  • Antenes de tipus segmentat: col·lèmbols i diplurs. Cada segment de l’antena presenta un joc muscular que el mou de forma independent.
  • Antenes de tipus anellat o flagel·lat: insectes. Únicament el primer segment situat a la base en unió amb el cap (l’escap) presenta musculatura pròpia, de manera que el moviment de tota l’antena depèn completament d’aquesta peça.

Parts de les antenes dels insectes

Els tres elements bàsics que formen les antenes dels insectes són:

Antena d’una vespa inquilina del gènere Synergus (Hymenoptera). Imatge de Irene Lobato.

1) Escap: segment basal que s’articula amb el cap i l’únic amb musculatura pròpia. L’espai al cap on s’articula l’escap rep el nom de torulus.

2) Pedicel: segon segment antenal després de l’escap. Aquest segment és de vital importància en els insectes atès que en el seu interior es localitza l’òrgan de Johnston, un conjunt de cèl·lules sensorials. Aquest òrgan és absent en els hexàpodes no-insectes (col·lèmbols, diplurs).

3) Flagel: conjunt de la resta de segments que formen l’antena, i que individualment reben el nom de flagelòmers. Aquests flagelòmers estan connectats per membranes que permeten el seu moviment tot i no tenir musculatura pròpia.

Mil i una formes d’antenes!

A partir d’aquest patró base (escap + pedicel + flagel), cada grup d’insectes ha desenvolupat una o més formes d’antenes en funció de la seva forma de vida:

  • Aristades

Antenes molt reduïdes en forma de sac i una aresta plomosa que neix del seu segment terminal.

Exemple: model molt estès entre les mosques (Diptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’una mosca de la família Sarcophagidae de JJ Harrison, CC 1.0.
  • Aserrades

Cada segment presenta un lateral angulós o punxegut que dóna a l’antena un aspecte de serra.

Exemple: alguns escarabats (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’un escarabat de la família Chrysomelidae de John Flannery, CC 2.0.
  • Capitades

Les antenes capitades s’eixamplen abruptament en el seu extrem.

Exemple: papallones (Lepidoptera), alguns escarabats (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; centre: imatge d’un escarabat de l’espècie Platysoma moluccanum de Udo Schmidt, CC 2.0; esquerra: papallona, domini públic.
  • Claviformes

A diferència de les anteriors, les antenes claviformes es fan progressivament més gruixudes en el seu extrem.

Exemple: arnes (Lepidoptera), escarabats enterradors (coleòpters carronyers de la família Silphidae).

Esquerra: imatge de M. A. Broussard, CC 4.0; esquerra: escarabat de l’espècie Thanatophilus sinuatus (Silphidae) de Wim Rubers, CC 3.0.
  • Estilades

Similar a les antenes filiformes (veure més a baix), però amb la diferència que els segments terminals s’estrenyen sobtadament en forma de fil, el qual pot alhora tenir setes (pèls) o no.

Exemple: mosques braquíceres (Diptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’un dípter braquícer de la família Asilidae de Opoterser, CC 3.0.
  • Filiformes

És la forma més simple d’antenes: allargades, primes i amb segments de mida i forma pràcticament idèntiques.

Exemple: paneroles (Blattodea), llagostes i grills (Orthoptera), escarabats longicornes (Cerambycidae, Coleoptera), xinxes (Heteroptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: panerola de l’espècie Periplaneta americana de Gary Alpert, CC 3.0.
  • Flabelades

D’aspecte similar a les antenes pectinades i a les lamelades (veure més endavant), però amb la diferència que les projeccions laterals dels segments són molt més fines i aplanades, amb un aspecte similar a un ventall de paper, i ocupen tota l’antena (no només els últims segments com en les lamelades). Els mascles presenten aquest tipus d’antenes per augmentar la superfície que capta feromones.

Exemple: escarabats (Coleoptera), vespes (Hymenoptera) i arnes (Lepidoptera).

Mascle de coleòpter del gènere Rhipicera. Imatge de Jean and Fred, CC 2.0.
  • Geniculades

Presenten una articulació, fet que dóna a l’antena un aspecte de genoll. El primer segment antenal (escap) sol estar abans de l’articulació, després de la qual vindrien la resta de segments que, en aquest cas, reben en conjunt el nom de funicle.

Exemple: algunes abelles i vespes, molt marcat en parasitoides (Hymenoptera), escarabats curculiònids (Curculionidae, Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’una vespa parasitoide de l’espècie Trissolcus mitsukurii, domini públic.
  • Lamelades

Els segments terminals s’allarguen cap a un dels laterals formant unes projeccions aplanades que encaixen les unes amb les altres, el que dóna a aquestes antenes un aspecte de ventall.

Exemple: escarabats de la família Scarabaeidae (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; imatge d’un coleòpter de la família Scarabeidae, domini públic.
  • Moniliformes

A diferència de les antenes filiformes, els segments antenals són més o menys rodons i de mida similar, el que dóna a l’antena un aspecte de collaret de perles.

Exemple: tèrmits (Isoptera), alguns escarabats (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’un tèrmit de Sanjay Acharya, CC 4.0.
  • Pectinades

Els segments són allargats en un lateral, fet que dóna a l’antena un aspecte de pinta.

Exemple: sínfits (Hymenoptera), vespes parasitoides (Hymenoptera), alguns escarabats (Coleoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatgen d’un coleòpter de la família Lycidae de John Flannery, CC 2.0.
  • Plomoses

Com el seu nom indica, aquestes antenes semblen plomes, doncs els segments presenten ramificacions fines. En augmentar la superfície antenal, augmenta la capacitat per detectar molècules en suspensió, com és el cas de les feromones.

Exemple: mascles de mosquit (Diptera) i d’arna (Lepidoptera).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: mascle d’arna del gènere Polyphemus de Megan McCarty, CC 3.0.
  • Setiformes

Aquestes antenes tenen forma de setes, sent allargades i més estretes cap al seu extrem. Similars a les filiformes, però més fines.

Exemple: efemeròpters (Ephemeroptera), espiadimonis i cavallets del diable (Odonata).

Esquerra: imatge de M. A. Broussard, CC 4.0; dreta: imatge d’un espiadimoni, domini públic.

Pots llegir més sobre elles en aquest i aquest enllaç, o veure la galeria de fotografies d’antenes de John Flannery.

Imatge de portada de Jean and Fred, CC 2.0.

.         .         .

Si coneixes més tipus d’antenes o alguna curiositat sobre les seves funcions, no dubtis a deixar un comentari!

¿Cuántas especies viven en la Tierra?

El día 22 de mayo se celebra a nivel mundial el Día Internacional de la Diversidad Biológica, o dicho de otra forma, el de la Biodiversidad, para conmemorar la aprobación del Convenio de la Diversidad Biológica. ¿Sabías que sólo conocemos el 15% de toda la biodiversidad del planeta? ¡Descubre más!

¿CUÁNTAS ESPECIES VIVEN EN LA TIERRA?

Antes de responder a esta pregunta, es importante entender el concepto de biodiversidad o diversidad biológica.

¿QUÉ ES LA BIODIVERSIDAD?

La biodiversidad es el conjunto de seres vivos sobre la Tierra y los patrones naturales que conforma, es decir, el conjunto de plantas, animales y microorganismos existentes. Dicha biodiversidad debe de entenderse dentro de cada especie, entre las especies y de los ecosistemas.

biodiversidad, especies, animales, plantas, seres vivos

EL CONVENIO DE LA DIVERSIDAD BIOLÓGICA

El Convenio de la Diversidad Biológica, que se aprovó en 1992 y que cuenta con la ratificación de 193 países hasta la fecha, tiene tres objetivos principales: la conservación de la diversidad biológica, la utilización sostenible de sus componentes y la participación justa y equitativa en los beneficios que se deriven de la utilización de los recursos genéticos, con el fin de promover medidas para un futuro sostenible.

Los Gobiernos de los países adheridos se reúnen cada dos años con el fin de examinar el progreso, fijar las prioridades y adoptar planes de trabajo.

Según el Convenio, las especies, recursos genéticos y ecosistemas deberían de usarse en beneficio del ser humano, pero sin que esto suponga una reducción de la biodiversidad. Además aplica el principio de precaución, es decir, que cuando no haya evidencias científicas suficientes para demostrar la reducción o pérdida de biodiversidad no deberá utilizarse como motivo para aplazar la adopción de medidas para hacerle frente. Así pues, es un instrumento que promueve el desarrollo sostenible.

ESPECIES DE LA TIERRA

Hasta la fecha, se han identificado y descrito un total de 1,3 millones de especies, pero lo cierto es que en la Tierra viven muchas más. El censo más preciso, realizado por la Universidad de Hawaii, calcula que en el planeta viven un total de 8,7 millones de especies.

Si tomamos esta cifra como buena, significa que hemos descrito sólo el 15% de todos los organismos que viven en la Tierra. Para ser más precisos, nos quedan el 86% de las especies terrestres por describir y el 91% de las marinas.

Por poner un ejemplo de lo lejos que estamos de conocer todas las especies, el año pasado se identificó una nueva especie de primate: el orangután de Tapanuli (Pongo tapanuliensis), que vive en la isla de Sumatra (Indonesia).

biodiversidad, diversidad biológica, tapanuli organgutan, orangutan sumatra, especies
Sólo conocemos el 15% de todas las especies de la Tierra (Foto: National Geographic)

A pesar de estas cifras, el baile de números es importante y las diferentes investigaciones realizadas dan valores distintos, llegando al punto que algunas apuntan que habría 100 millones de especies.

Lo que está claro es que nos queda mucho camino por recorrer hasta tener un catálogo completo de especies. Lo peor de todo es que muchas de estas especies sin identificar se están extinguiendo antes de que las descubramos.

CLASIFICACIÓN Y DISTRIBUCIÓN DE LAS ESPECIES

Aquí no queremos hablar de la manera como se clasifican las especies, como ya hicimos en este artículo sobre clasificación y filogenia. Aquí queremos ver como se distribuyen las especies en los diferentes grupos de seres vivos.

Si tomamos el sistema de clasificación de Margulis y Schwartz de organización de los seres vivos en cinco reinos, según Llorente-Bousquets, J y S. Ocegueda (2008), ésta es la distribución de las especies conocidas del planeta:

especies conocidas planeta tierra, biodiversidad, especies, planeta tierra
Distribución de las especies conocidas del planeta Tierra (Fuente propia)

El grupo predominante es el de los animales, representando el 76% de todas las especies conocidas. Dentro de los animales, los artrópodos son el grupo con más especies, con cerca de 1,2 millones de especies (siendo 1 millón de las especies insectos), lo que representa el 86% del total de animales conocidos. Nuestro grupo, el de los cordados, queda a años luz de esta cifra, pues está formado por unas 61.000 especies (el 4% de las especies), siendo superado por el de los moluscos, con unas 85.000 especies.

artropodos, insectos, animales, biodiversidad, especies, planeta tierra
Los artrópodos son el mayor grupo de animales, con más de un millón de especies (Foto: Pixabay, Creative Commons).

Las plantas representan el 17% de las especies estudiadas, con unas 292.000 especies aproximadamente. Estas incluyen diferentes grandes grupos: las angiospermas (87% de las especies), las gimnospermas (0,3%), los helechos (4,3%) y los briófitos (9%).

¿QUÉ CAUSA LA EXTINCIÓN DE ESPECIES?

Las actividades humanas causan una disminución de las especies debido a que no se aplican siempre los principios de desarrollo sostenible. Entre estas actividades cabe destacar las siguientes:

  • Alteración y destrucción de ecosistemas. La destrucción de la selva tropical es un ejemplo. En muchas zonas tropicales, como el sureste asiático, se arrasa con grandes extensiones de selva para plantar la palma, de la cual se extrae el famoso aceite de palma. Esto pone en peligro una elevada cantidad de especies, entre las cuales hay los orangutanes. ¡Evita los productos con aceite de palma para evitar esta situación! Otro ejemplo es la fragmentación de los ríos debido a la construcción de grandes presas, lo que impide a peces como el salmón, la anguila o la lamprea a desplazarse libremente entre los ríos y el mar.
orangutan, aceite de palma, indonesia, sureste asiático, biodiversidad, amenazas biodiversidad
Orangután (Pongo sp.) víctima de la deforestación para la industria del aceite de palma. Foto: crédito desconocido
  • Prácticas agrícolas. El uso abusivo de pesticidas está causando la muerte masiva de abejas, insectos esenciales para la polinización y, por lo tanto, para la provisión de alimentos. Como hemos visto antes, la agricultura necesita de terreno y, cuando este no está disponible, se destruyen grandes extensiones.
  • Caza y explotación de animales. Hasta no hace muchos años, se producía la caza de animales que se creían perjudiciales para los ganados, la caza o el hombre, como es el caso del lobo ibérico. El comercio de especies exóticas, el coleccionismo o la captura de animales con propiedades supuestamente curativas también están amenazando a la biodiversidad.
lobo ibérico, biodiversidad, amenazas biodiversidad
Cadáveres de lobos aparecidos en Asturias. Diversas fuentes
  • Introducción de especies exóticas. Cuando una especie es introducida, voluntariamente o involuntariamente, en una zona de donde no es originaria se le llama especie exótica. Estas compiten por el espacio y recursos con las autóctonas, de manera que las especies locales se ven perjudicadas. Si, además, estas nuevas especies desplazan a las locales entonces tienen un comportamiento invasor. En Hawaii, la actividad humana y la introducción de nuevas especies como la rata ha causado la desaparición del 90% de las especies de aves autóctonas.
  • Cambio climático. El cambio climático es responsable de la alteración de los hábitats y de las condiciones en las que viven las especies. Causa blanqueamiento de coralesexpansión de las epidemias, causa cambios en la migración de las especies como las ballenas, aumenta el nivel del mar… y un largo etcétera.
blanqueamiento corales, biodiversidad, amenazas biodiversidad, cambio climático, cambio global
Blanqueamiento en Samoa Americana. La primera foto (antes) fue tomada en diciembre de 2014 y la segunda (despúes)e en febrero de 2015 (Foto: XL Catlin Seaview Survey).
  • Turismo. Cuando el turismo se lleva a cabo de forma no respetuosa con la biodiversidad o superando la capacidad de carga del ecosistema, ésta puede verse afectada. La solución pasa por el turismo sostenible.
  • Desconocimiento. El desconocimiento e ignorancia son el peor enemigo de la conservación. Por este motivo nació este blog, para concienciar a sus lectores de lo importante que es preservar la naturaleza.

¿Eres un/a amante de la naturaleza y la biodiversidad? ¡Comparte con nosotros las medidas que tomas para no ponerla en peligro!

How would it be a world without bees?

In recent years, the idea of a world without bees has transcended numerous social and political spheres. The scientific community has been warning about the disappearance of bees during years without any consequence. But now, it has become an issue of major concern, acquiring a media relevance like never before. At the end of 2017, the EU decided to take matters into its own hands to prevent this tragic ending for bees.

Why would it be a problem that bees disappear from Earth? And which measures has the UE take in order to address this problem?

The DDT and Rachel Carson

The use of pesticides has been a common agricultural practice from the very beginning of agriculture. At the beginning, the use of organic chemicals derived from naturals sources, as well as inorganic substances such as sulphur, mercury and arsenical compounds, was very common. However, they eventually stopped being used due to their toxicity (especially, phytotoxicity). The growth in synthetic pesticides accelerated in the mid-twentieth century, especially with the discovery of the effects of DDT, which became one of the most widely used pesticides of all time. DDT became famous due to its generalist insecticidal effects and low toxicity to mammals and plants, being used to eradicate household pests, fumigate gardens and control agricultural pests.

Picture above: cover of a March 1947 brochure on DDT from the U.S. Department of Agriculture (source). Picture below: kids being showered with DDT during a campaing against poliomyelitis, which was believed to be transmitted by a mosquito (source).

DDT resulted to be very effective against insect vectors of deadly diseases such as malaria, yellow fever and typhus, thus becoming even more popular.

However, the overuse of this and other pesticides eventually began to cause severe human and environmental health problems, because some of these products started to contaminate soils, plants and their seeds, and to bioaccumulate within the trophic nets, finally affecting mammals, birds and fishes, among others. The indiscriminate use of pesticides and their effects were denounced by Rachel Carson through her most famous publication, “Silent Spring”, which was distributed in 1962.

Silent Spring, by Rachel Carson (source).

From Carson to the neonicotinoids

Since Carson denounced the abusive use of pesticides, the world has witnessed the birth of many new substances to fight crop pests. Since then, researches have focused on finding less toxic and more selective products in order to minimize their impact on both human and environmental health. Could we say it has been a success?

Yes… and no. Although their use stopped being so indiscriminate and famers started betting on the use of more selective products, there were still some open fronts. Fronts that would remain open until today.

Between 1980 and 1990, Shell and Bayer companies started working on the synthesis of a new assortment of pesticides to face the resistances that some insects have acquired to some of the most widely used substances those days: the neonicotinoids. Neonicotinoids are a class of neuro-active insecticides chemically similar to nicotine; they effect the insect nervous system with a high specificity, while having a very low toxicity to mammals and birds compared to their most famous predecessors (organochlorides, such as the DDT, and carbamates). The most widely used neonicotinoid nowadays (and also one of the most widely used pesticides worldwide) is the imidacloprid.

However, far from getting famous for their effectiveness, the use of neonicotinoids began to get controversial for their supposed relationship with the disappearance of bees.

How do these pesticides affect bees?

For some years now (2006 onwards) the neonicotinoids are in scientists’ spotlight as one of the main suspects of the disappearance of bees. However, it has not been until now that something that scientists had been denouncing for years has finally been assumed: that neonicotinoids cause a greater impact than it was thought.

Dead bees in front of a hive. Public domain.

Unlike other pesticides that remain on plant surfaces, some studies state that neonicotinoids are taken up throughout their tissues, thus being accumulated in their roots, leaves, flowers, pollen and nectar. Also, that nearby fields are polluted with the dust created when treated seeds are planted and that plants derived from these seeds will accumulate a major amount of pesticide than sprayed plants (as it is explained in this publication of Nature). This causes bees (as well as other pollinating insects) to be exposed to high levels of pesticides, both in the crops themselves and in the surrounding foraging areas. These same studies have revealed with less support that these products may persist and accumulate in soils, which may affect future generations of crops.

Some of the negative effects on bees that have been related to neonicotinoids are:

In addition to the effects of neonicotinoids, other important causes must be taken into account: climate change, less food sources and changes in soil uses.

What would happen if bees disappear?

Colonial bees (like honeybees) are the most famous among bees. However, they only represent a mere portion within the great diversity of known bees, most of which have solitary life habits and build their nests inside small cavities. The ecological importance of solitary bees is equal to or greater than that of honey bees, but effects that neonicotinoids have on them are still poorly studied. Together, bees are among the most efficient pollinating organisms.

Solitary bee entering in its nest. Public domain.

According to this study carried out in German territory and published in POLS One at the end of 2017, a large part of flying insect diversity (including numerous pollinators) and up to 75% of their biomass have decreased in the last three decades due to the interaction of several factors. And if that was not enough, the authors say that these numbers can probably be extrapolated to other parts of the world.

What would happen if both colonial and solitary bees disappear?

  • Disappearance of crops. The production of many crops, such as fruit trees, nuts, spices and some oils, depends entirely on pollinators, especially on bees.
  • Decrease in the diversity and biomass of wild plants. Up to 80% of wild plants depend on insect pollination to reproduce, as it happens with many aromatic plants. A decrease in the vegetal surface would lead to serious problems of erosion and desertification.
  • Less recycling of soil nutrients. With the disappearance of the plants, the washing and deposition of soil nutrients would go down.
  • Less biological pest control. Some solitary bees are parasitoids of other solitary bees and other groups of insects (natural enemies); their absence could trigger the recurrence of certain pests.
  • Negative effects on higher trophic levels. The disappearance of bees could cause a decrease in the diversity and biomass of some birds that feed on pollinators.
  • Disappearance of bee-derived products, such as honey or wax.

The UE bans the use of neonicotinoids

Facing this reality, several governments have tried to limit the use of pesticides as a part of the measures to stop the decline of bee populations and the resulting economic losses. To give some examples, since 2006 the biomass of honey bees has decreased by 40% in the US, 25% in Europe since 1985 and 45% in the United Kingdom since 2010, according to data published by Greenpeace.

To date, the more restrictive measures limited the use of neonicotinoids in certain situations or seasons. But at the beginning of 2018, the EU, after preparing a detailed report based on more than 1,500 scientific studies carried out by the EFSA (European Food Safety Authority), decided to definitively ban the use of the three most used neonicotinoids in a maximum period of 6 months in all its member states after demonstrating that they are harmful for bees: imidacloprid, clothianidin and thiamethoxam.

Will the objectives of this report be accomplished? We will have to wait …

.           .           .

Although slowly, the fight against the abusive use of pesticides is paying off. However, we will have to see if the gap left by some products is filled with other substances or if governments commit to adopt more environment friendly agricultural models.

Main picture obtained from [link].