Arxiu de la categoria: General

El Residuo Cero: vivir sin generar residuos – Entrevista a Esther Peñarrubia

Esther Peñarrubia (Barcelona, 10 de diciembre de 1980), conocida por ser la traductora del libro Residuo Cero en Casa, de Bea Johnson, y embajadora de la filosofía Residuo Cero en nuestro país, es Doctora Ingeniera Agrónoma por la Universidad de Lleida y la University of Thessaly (Grecia), además de aficionada a los jardines históricos y al cicloturismo.

El RESIDUO CERO: VIVIR SIN GENERAR RESIDUOS – ENTREVISTA A ESTHER PEÑARRUBIA

Esther, muchas gracias por aceptar esta entrevista para compartir con nosotros y nuestros lectores tu experiencia con la no generación de residuos. Siendo ingeniera agrónoma, ¿qué te llevó a traducir el libro Zero Waste Home?

Buscando una receta en Google para hacer dentífrico casero vi un vídeo de Bea Johnson, la autora del libro. Muchos de los ejemplos que citaba para reducir residuos ya los hacíamos en casa, sin que lo llamáramos Residuo Cero, pero todavía había algunos que no nos habíamos planteado. Vi que el libro no estaba disponible en catalán ni en castellano, así que me anime a contactar con ella para traducirlo.

zero waste home, bea johnson, residuo cero, esther peñarrubia
El libro Zero Waste Home fue traducido al castellano por Esther Peñarrubia (Foto: Zero Waste Home).

Veo que la práctica del residuo cero ya la llevabas a cabo antes incluso de conocer el concepto propiamente. ¿Qué te impulsó a vivir sin generar residuos?

Ha sido una pasión desde la adolescencia y ahora se ha convertido en una filosofía de vida.

¿Qué cambios hicisteis en vuestra vida?

Aprendimos a reducir muchas cosas, perdimos la vergüenza a la hora de pedir objetos o herramientas que necesitamos puntualmente a amigos, adoptamos la bicicleta como medio de transporte familiar diario, intentamos compartir vehículo en desplazamientos largos…

El Residuo Cero es un tema de actualidad. ¿Es realmente posible vivir sin generar ningún residuo?

Claro que no, ¡no vivimos aislados dentro de una cueva! El cero absoluto es casi imposible, siempre necesitaremos un medicamento, por ejemplo, que va en un envase. Pero sí es muy fácil vivir sin generar demasiados residuos… Hace años que lo intentamos y no es nada difícil, sólo debes tener ganas de cambiar de hábitos.

Imagino que al principio es un poco complicado y que tienes que estar siempre en alerta y vigilante. ¿Es así?

Un poco sí, sobre todo tienes que aprender a rechazar, como los pequeños objetos que se quieren colar en tu vida y que no deberían pasar del umbral de la entrada: obsequios de propaganda o muestras de nuevos productos…

Hace unas semanas, la Unión Europea aprobó la prohibición de varios objetos de plástico de un solo uso a partir de 2020. ¿Qué opinas de esta medida?

Es perfecto, ¡ojalá lo instaurasen desde mañana mismo! Si la gente necesita que les prohíban determinados aspectos de su vida para tener que modificar sus hábitos, cuando éstos no son beneficiosos ni para ellos ni para el medio ambiente, tales como fumar en lugares públicos hace unos años o el actual uso indiscriminado de plásticos desechables, las legislaciones deben ser las que marquen las directrices.

Imagínate por un momento que tienes el poder de tomar decisiones de carácter político. ¿Qué medidas impulsarías para evitar la generación de basura?

Incentivaría a las empresas que invirtieran en I+D, teniendo en cuenta aspectos sobre sostenibilidad y la economía circular. También intentaría fomentar el comercio responsable y de segunda mano en diversos ámbitos y el intercambio de bienes entre personas y colectivos, como los talleres de reparación, bibliotecas de herramientas, libros libres…

Seguro que cuando explicas que vives sin generar residuos, te encuentras con todo tipo de excusas por parte de la gente para no ponerse a ello. A mi mismo, que todavía estoy muy lejos del Residuo Cero, me ha pasado.

Una de las más recurrentes es la falta de tiempo y otra la falta de legislación que evite la generación de residuos. A menudo me dicen: “Hasta que los gobiernos y las grandes empresas no actúen yo no puedo hacer nada”. ¡Ninguna de las dos es cierta! Está claro que como consumidores tenemos un poder que a veces olvidamos, y comprar equivale a votar, así que individualmente sí podemos hacer, ¡y mucho! El tiempo es el mismo para todos, lo que hace falta es aprender a priorizar, aunque no es una tarea fácil y, sobre todo valorar si nuestro tiempo libre lo podemos dedicar a cosas interesantes que nos llenan y nos hagan felices o sencillamente lo destinamos a acciones banales.

Una de las excusas que yo me he encontrado es que esta manera de vivir es más cara. ¿Qué dice tu propia experiencia?

Es cierto que hay productos relacionados con el Residuo Cero que comparados con los convencionales de un supermercado común son más caros, como algunos que puedan provenir del Comercio Justo, la agricultura ecológica o disponibles a granel. Pero, en conjunto, si consumimos menos, compartimos más, compramos a granel, de segunda mano y productos locales y de temporada podemos ahorrar dinero, sin tener en cuenta otros beneficios colaterales.

Ahora vamos a la parte práctica. Alguien que se plantee vivir según el Residuo Cero en una gran ciudad como Barcelona, ​​lo tiene más fácil para encontrar tiendas que vendan todo tipo de producto a granel. Ahora bien, en poblaciones más pequeñas, ¿cómo se puede llevar a cabo?

Buscando y comprando a productores locales, que seguro que los hay. Comprando de manera cooperativa, conjuntamente con otras familias (formando parte o no de una cooperativa de consumidores) y aprovechando los viajes por diversos motivos a otras poblaciones donde sí disponen de estos productos que no encuentras cerca de casa. ¡No hay excusas! Ahora estamos en la era de la información y por suerte empiezan a salir webs y apps que nos pueden ayudar mucho a hacernos la vida más fácil y sostenible.

armario residuo cero, residuo cero, compra a granel, esther peñarrubia
Un armario Residuo Cero está formado por botes de cristal con productos varios comprados a granel (Foto: Esther Peñarrubia).

Comprar alimentos a granel es fácil si nos lo planteamos. Ahora bien, ¿cómo lo hacemos con productos de aseo personal y del hogar?

Para limpiar nuestra casa basta con sólo bicarbonato sódico, comprado a granel, y vinagre blanco concentrado, que a veces se puede encontrar a granel. En el libro hay un capítulo que habla de “La magia del vinagre”, con recetas básicas para realizar diversas tareas de limpieza y otros de higiene personal. En casa preferimos comprar los productos de aseo personal a granel a productores locales, como el desodorante, el tónico, el champú, la pasta de dientes y la crema del cuerpo.

Yo mismo intento reducir los residuos que genero llevando a cabo pequeñas acciones, pero este verano fui a Indonesia de vacaciones y me fue realmente complicado. ¿Qué podemos hacer cuando estamos de viaje?

¡Podemos hacer muchas cosas! Por ejemplo, en términos de higiene personal, podemos llevar nuestros jabones, pastas de dientes, champús, etc. en pequeños frascos de cristal o metal, evitando así tener que coger los que hay disponibles en los hoteles, que a menudo llevan un envase de plástico. También se pueden llevar bolsas de tela, que no pesan casi nada, para comprar todo lo que podamos a granel e, incluso, llevar botellas que se puedan rellenar. Por otra parte, podemos utilizar los botes de cristal que hayamos comprado, como una mermelada, como envase para llevar comida, para no tener que cargar una fiambrera desde casa.

materiales residuo cero, residuo cero, esther peñarrubia
Hay muchos productos que permiten evitar la generación de residuos y, algunos de ellos, nos pueden ser útiles mientras viajamos (Foto: Esther Peñarrubia).

¿Algún consejo más para nuestros lectores?

Que no tengan miedo de rechazar lo que no necesitan, siempre y cuando lo hagan de manera educada, y que lleven siempre encima una bolsa de tela.

Quizás a nivel doméstico es relativamente más fácil de conseguir el Residuo Cero. Ahora bien, a nivel de las empresas, administraciones públicas… ¿qué les aconsejarías?

Pues les aconsejaría seguir los mismos pasos que hemos hecho en casa: analizar qué residuos generan y buscar alternativas que generen menos.

En el caso de empresas privadas les aconsejaría que adjudicaran una persona delegada Residuo Cero, imprescindible que esté motivada, para gestionar las dudas que surjan al respecto y, sobre todo, para animar a que la gente cambie los hábitos generadores de residuos. En cuanto a las administraciones públicas se podría crear un departamento entero al respecto, es un tema suficientemente importante como para invertir parte de los presupuestos.

Y con todo este esfuerzo que tú y tu familia hacéis, ¿habéis encontrado una mejora en vuestra vida?

A nivel personal estamos muy satisfechos con las alternativas que hemos ido encontrando a los productos o maneras de hacer convencionales, aunque a veces han requerido de cierto tiempo. Otra mejora es que nos ha permitido disfrutar de más tiempo para dedicar a nuestras pasiones.

Pensando un poco en las fechas de consumismo que se acercan, como es la Navidad, ¿qué regalos aconsejarías a la gente para llevar una vida Residuo Cero?

Como regalo físico una buena botella de agua hecha de acero inoxidable o de cristal. Otros regalos igual de buenos son las experiencias, como una entrada de cine o teatro, sin imprimirla.

¿Algún otro consejo para estas fiestas?

Reflexionar un poco antes de consumir o comprar. Regalar productos locales y de primera necesidad (un lote de alimentos locales y comprados a granel es igual de aceptable que la mejor joya); regalar experiencias; comprar de segunda mano (sin miedo a decirlo); envolver los regalos con un trozo de tela, siguiendo los pasos de la técnica Furoshiki, y sin papel de regalo ni cinta adhesiva…

Esther, muchas gracias por compartir con nosotros tu experiencia. Estoy seguro que habrás puesto algo más de luz en este camino hacia el Residuo Cero a muchas personas que hasta ahora no se han atrevido a dar el primer paso.

Anuncis

From lab to big screen (II)

As I told you in the previous article on genetics and cinema, there is a wide variety of films that talk about genetics. In the next article we will talk about science fiction, with two well-known films. Beware: spoilers!

GATTACA (1997)

Director: Andrew Niccol

Cast: Ethan Hawke, Uma Thurman, Jude Law

Genre: Science fiction

Story line: Vincent is one of the last “natural” babies born into a sterile, genetically-enhanced world, where life expectancy and disease likelihood are ascertained at birth. Myopic and due to die at 30, he has no chance of a career in a society that now discriminates against your genes, instead of your gender, race or religion. Going underground, he assumes the identity of Jerome, crippled in an accident, and achieves prominence in the Gattaca Corporation, where he is selected for his lifelong desire: a manned mission to Saturn’s 14th moon (titan). Constantly passing gene tests by diligently using samples of Jerome’s hair, skin, blood and urine, his now-perfect world is thrown into increasing desperation, his dream within reach, when the mission director is killed – and he carelessly loses an eyelash at the scene! Certain that they know the murderer’s ID, but unable to track down the former Vincent, the police start to close in, with extra searches, and new gene tests. With the once-in-a-lifetime launch only days away, Vincent must avoid arousing suspicion, while passing the tests, evading the police, and not knowing whom he can trust.

Relation with genetics: GATTACA is the “genetic” film par excellence. Starting with the title, this is formed by the initials of the four nitrogenous bases that make up DNA (guanine, adenine, thymine and cytosine). In addition, the helical shape of the DNA is repeated in several moments of the film, as in the stairs of Vincent’s house.

The main issue is about genetic selection, all children born have been genetically selected, closely linked to bioethics. The idea of ​​this selection is to reach eugenics, that is, to improve the population by selecting the “best” humans. This concept can be related to the Hitler’s Germany, who believed that Germans belonged to a superior group of races called “Aryan”. Hitler said that German Aryan race had been better endowed than the others and that this biological superiority destined Germans to oversee an empire in Eastern Europe.

Although nowadays genetic selection is valid and is used to avoid diseases, it is not applied with the same purposes as those of the film. At present, it is decided to carry out genetic selection after having studied the family and carried out the appropriate genetic counselling. It aims to help patients and their families avoid the pain and suffering caused by a genetic disease and should not be confused with the eugenic objective of reducing the incidence of genetic diseases or the frequency of alleles considered to be deleterious in the population.

This is very related to the genetic discrimination, case also exposed in the film. Gattaca is situated in a possible future in which genetics, trying to improve the quality of life of society, causes a movement of discrimination.

When we talk about discrimination, we tend to think about racial discrimination. This is defined as the different or exclusive treatment of a person for reasons of racial or ethnic origin, which constitutes a violation of the fundamental rights of individuals, as well as an attack on their dignity. Racism has been present throughout the history of mankind, especially in the twentieth century with racial discrimination in the United States and apartheid in South Africa.

For some time now, genetic discrimination has been gaining weight. It happens when people are treated differently by their company or insurance company because they have a genetic mutation that causes or increases the risk of a hereditary disorder. Fear of discrimination is a common concern among people who undergo genetic testing, and is a current problem that concerns the population because your own genome does not have to be a curriculum vitae that opens or closes doors as happens in the film. Vincent goes to work in Gattaca after performing a urine test and a blood test, since in Gattaca they do not choose workers for their ability or ability but for their DNA.

However, the film ends with the sentence “There is no gene for the human spirit”. This means that, although the society in which Gattaca is located is based on genetic modification, it does not affect the morality and final character of people because there is no way to genetically relate to the spirit, only the body has the genetic information.

Video 1. Trailer Gattaca (Source: YouTube)

JURASSIC PARK (1993)

Director: Steven Spielberg

Cast: Sam Neill, Laura Dern, Jeff Goldblum

Genre: Science fiction

Story line: Huge advancements in scientific technology have enabled a mogul to create an island full of living dinosaurs. John Hammond has invited four individuals, along with his two grandchildren, to join him at Jurassic Park. But will everything go according to plan? A park employee attempts to steal dinosaur embryos, critical security systems are shut down and it now becomes a race for survival with dinosaurs roaming freely over the island.

Relation with genetics: In the first film of this saga, from dinosaur’s fossils scientists extract DNA to be able to clone dinosaurs. The cloned dinosaurs will be part of the Jurassic park on which the film is based.

It is true that DNA can be extracted from bones, widely used in forensic genetics. Same as the issue of cloning, which was known by the Dolly sheep, the first large animal cloned from an adult cell in July 1996. But the film goes further and raises the possibility of reintroducing, in today’s world, extinct species and challenge natural selection.

Video 2. Trailer Jurassic Park (Source: YouTube)

REFERENCES

MireiaRamos-angles2

Del laboratorio a la gran pantalla (II)

Como ya os dije en el anterior artículo sobre genética y cine, hay una gran variedad de largometrajes que tocan la genética. En el siguiente artículo tocaremos la ciencia ficción, con dos películas muy conocidas. ¡Cuidado: spoilers!

GATTACA (1997)

Dirección: Andrew Niccol

Reparto: Ethan Hawke, Uma Thurman, Jude Law

Género: Ciencia ficción

Sinopsis: Ambientada en una sociedad futura, en la que la mayor parte de los niños son concebidos in vitro y con técnicas de selección genética. Vincent, uno de los últimos niños concebidos de modo natural, nace con una deficiencia cardíaca y no le auguran más de treinta años de vida. Se le considera un inválido y, como tal, está condenado a realizar los trabajos más desagradables. Su hermano Anton, en cambio, ha recibido una espléndida herencia genética que le garantiza múltiples oportunidades. Desde niño, Vincent sueña con viajar al espacio, pero sabe muy bien que nunca será seleccionado. Durante años ejerce toda clase de trabajos hasta que un día conoce a un hombre que le proporciona la clave para formar parte de la élite: suplantar a Jerome, un deportista que se quedó paralítico por culpa de un accidente. De este modo, Vincent ingresa en la Corporación Gattaca, una industria aeroespacial, que lo selecciona para realizar una misión en Titán. Todo irá bien, gracias a la ayuda de Jerome, hasta que el director del proyecto es asesinado y la consiguiente investigación pone en peligro los planes de Vincent.

Relación con la genética: GATTACA es la película “genética” por excelencia. Empezando por el título, éste está formado por las iniciales de las cuatro bases nitrogenadas que conforman el ADN (guanina, adenina, timina y citosina). Además, la forma helicoidal del ADN se repite en varios momentos del largometraje, como en las escaleras de casa de Vincent.

El principal tema que trata es el de la selección genética, todos los niños que nacen han sido seleccionados genéticamente, muy ligado a la bioética. La idea de esta selección es llegar a la eugenesia, es decir, mejorar la población mediante la selección de los “mejores” humanos. Este concepto lo podemos relacionar con la Alemania de Hitler, quién creía que los alemanes pertenecían a un grupo superior de razas llamado “ario”. Hitler decía que la raza aria alemana había sido mejor dotada que las demás y que esa superioridad biológica destinaba a los alemanes a estar al mando de un imperio en Europa Oriental.

Aunque hoy en día la selección genética es vigente y es utilizada para evitar enfermedades, no se aplica con los mismos fines que los de la película. En la actualidad, se decide realizar selección genética después de haber estudiado la familia y realizado el adecuado consejo genético. Éste tiene como objetivo ayudar a los pacientes y a sus familias a evitar el dolor y el sufrimiento causado por una enfermedad genética, y no se tiene que confundir con el objetivo eugénico de reducir la incidencia de enfermedades genéticas o la frecuencia de alelos considerados deleterios en la población.

Esto está muy relacionado con la discriminación genética, caso también expuesto en el filme. Gattaca se sitúa en un posible futuro en el cual la genética, intentando mejorar la calidad de vida de la sociedad, provoca un movimiento de discriminación.

Cuando hablamos de discriminación acostumbramos a pensar en la discriminación racial. Ésta se define como el trato distinto o excluyente a una persona por motivos de origen racial o étnico, lo que constituye una vulneración de los derechos fundamentales de las personas, así como un ataque a su dignidad. El racismo ha estado presente en toda la historia de la humanidad, especialmente en el siglo XX con la discriminación racial en Estados Unidos y con el Apartheid en Sudáfrica.

De un tiempo a esta parte la discriminación genética ha ido cogiendo peso. Ocurre cuando las personas son tratadas de manera diferente por su empresa o compañía de seguros porque tienen una mutación genética que causa o aumenta el riesgo de un trastorno hereditario. El miedo a la discriminación es una preocupación común entre las personas que se hacen pruebas genéticas y es un problema actual que concierne a la población, porque tu propio genoma no tiene que ser un currículum vitae que te abra o cierre puertas como pasa en la película. Vincent entra a trabajar en Gattaca después de realizar una prueba de orina y un análisis de sangre, ya que en Gattaca no eligen a los trabajadores por su capacidad ni habilidad sino por su ADN.

No obstante, la película termina con la frase “No hay gen para el espíritu humano”. Esto significa que, aunque la sociedad en la que se sitúa Gattaca se basa en la modificación genética, ésta no afecta en la moralidad y carácter final de las personas porque no existe forma de relacionar genéticamente al espíritu, sólo el cuerpo tiene la información genética.

Vídeo 1. Tráiler Gattaca (Fuente: YouTube)

PARQUE JURÁSICO (1993)

Dirección: Steven Spielberg

Reparto: Sam Neill, Laura Dern, Jeff Goldblum

Género: Ciencia ficción

Sinopsis: El multimillonario John Hammond consigue hacer realidad su sueño de clonar dinosaurios del Jurásico y crear con ellos un parque temático en una isla remota. Antes de abrirlo al público, invita a una pareja de eminentes científicos y a un matemático para que comprueben la viabilidad del proyecto. Pero las medidas de seguridad del parque no prevén el instinto de supervivencia de la madre naturaleza ni la codicia humana.

Relación con la genética: En la primera película de esta saga, a partir de fósiles de dinosaurios extraen el ADN para poder clonarlos. Los dinosaurios clonados formarán parte del parque jurásico en el que se basa la película.

Es cierto que se puede extraer ADN a partir de huesos, muy utilizado en la genética forense. Igual que el tema de la clonación, el cual fue conocido por la oveja Dolly, el primer gran animal clonado a partir de una célula adulta en julio de 1996. Pero la película va más allá y plantea la posibilidad de reimplantar, en el mundo actual, especies ya extinguidas y desafiar la selección natural.

Vídeo 2. Tráiler Parque Jurásico (Fuente: YouTube)

REFERENCIAS

MireiaRamos-castella2

Del laboratori a la gran pantalla (II)

Com ja vaig comentar en l’anterior article sobre genètica i cinema, hi ha una gran varietat de llargmetratges que toquen la genètica. En el següent article parlarem de la ciència ficció, amb dues pel·lícules molt conegudes. Atenció: spoilers!

GATTACA (1997)

Direcció: Andrew Niccol

Repartiment: Ethan Hawke, Uma Thurman, Jude Law

Gènere: Ciència ficció

Sinopsi: Ambientada en una societat futura, en la que la major part dels nens són concebuts in vitro i amb tècniques de selecció genètica. Vincent, un dels últims nens concebuts de manera natural, neix amb una deficiència cardíaca i no li auguren més de trenta anys de vida. Se’l considera un invàlid i, com a tal, està condemnat a realitzar els treballs més desagradables. El seu germà Anton, en canvi, ha rebut una esplèndida herència genètica que li garanteix múltiples oportunitats. Des de nen, Vincent somia amb viatjar a l’espai, però sap molt bé que mai serà seleccionat. Durant anys exerceix tota classe de feines fins que un dia coneix a un home que li proporciona la clau per formar part de l’elit: suplantar a Jerome, un esportista que es va quedar paraplègic per culpa d’un accident. D’aquesta manera, Vincent ingressa a la Corporació Gattaca, una indústria aeroespacial, que el selecciona per realitzar una missió a Titan. Tot anirà bé, gràcies a l’ajuda de Jerome, fins que el director del projecte és assassinat i la consegüent investigació posa en perill els plans de Vincent.

Relació amb la genètica: GATTACA és la pel·lícula “genètica” per excel·lència. Començant pel títol, aquest està format per les inicials de les quatre bases nitrogenades que conformen l’ADN (guanina, adenina, timina i citosina). A més, la forma helicoidal de l’ADN es repeteix en varis moments del llargmetratge, com en les escales de la casa de Vincent.

El principal tema que tracta és el de la selecció genètica, tots els nens que neixen han sigut seleccionats genèticament, molt lligat a la bioètica. La idea d’aquesta selecció és arribar a la eugenèsia, és a dir, millorar la població mitjançant la selecció dels “millors” humans. Aquest concepte el podem relacionar amb l’Alemanya de Hitler, qui creia que els alemanys pertanyien a un grup superior de races anomenat “ari”. Hitler deia que la raça alemanya havia sigut més dotada que les demés i que aquesta superioritat biològica destinava als alemanys a estar al capdamunt d’un imperi a Europa Oriental.

Tot i que avui en dia la selecció genètica és vigent i és utilitzada per evitar malalties, no s’aplica amb els mateixos fins que els de la pel·lícula. Actualment, es decideix realitzar selecció genètica després d’haver estudiat a la família i realitzar l’adequat consell genètic. Aquest té com a objectiu ajudar als pacients i a les seves famílies a evitar el dolor i el patiment causat per una malaltia genètica, i no s’ha de confondre amb l’objectiu eugènic de reduir la incidència de malalties genètiques o la freqüència d’al·lels considerats deleteris a la població.

Això està molt relacionat amb la discriminació genètica, cas també exposat a la pel·lícula. Gattaca es situa en un possible futur en el qual la genètica, intentant millorar la qualitat de vida de la societat, provoca un moviment de discriminació.

Quan parlem de discriminació acostumem a pensar en la discriminació racial. Aquesta es defineix com el tracte diferent o excloent a una persona per motius d’origen racial o ètnic, el que constitueix una vulneració dels drets fonamentals de les persones, així com un atac a la seva dignitat, El racisme ha estat present en tota la història de la humanitat, especialment en el segle XX amb la discriminació racial a Estats Units i amb l’Apartheid a Sudàfrica.

Des de fa un temps, la discriminació genètica ha anat agafant pes. Ocorre quan les persones són tractades de manera diferent per la seva empresa o companyia d’assegurances perquè tenen una mutació genètica que causa o augmenta el risc d’un trastorn hereditari. La por a la discriminació és una preocupació comú entre les persones que fan proves genètiques i és un problema actual que preocupa a la població, perquè el teu propi genoma no ha de ser un currículum vitae que t’obri o tanqui portes com passa a la pel·lícula. Vincent entra a treballar a Gattaca després de realitzar una prova d’orina i una analítica de sang, ja que a Gattaca no escullen als treballadors per la seva capacitat ni habilitat sinó pel seu ADN.

No obstant, la pel·lícula acaba amb la frase “No hi ha gen per a l’esperit humà”. Això significa que, tot i que la societat en la que es situa Gattaca es basa en la modificació genètica, aquesta no afecta a la moralitat i caràcter final de les persones perquè no existeix forma de relacionar genèticament a l’esperi, només el cos té informació genètica.

Video 1. Tràiler Gattaca (Font: YouTube)

PARC JURÀSSIC (1993)

Direcció: Steven Spielberg

Repartiment: Sam Neil, Laura Dern, Jeff Goldblum

Gènere: Ciència ficció

Sinopsi: El multimilionari John Hammond aconsegueix fer realitat el seu somni de clonar dinosaures del Juràssic i crear amb ells un parc temàtic en una illa remota. Abans d’obrir-lo al públic, convida a una parella d’eminents científics i a un matemàtic perquè provin la viabilitat del projecte. Però les mesures de seguretat del parc no preveuen l’instint de supervivència de la mare naturalesa ni la cobdícia humana.

Relació amb la genètica: A la primera pel·lícula d’aquesta saga, a partir de fòssils de dinosaures extrauen l’ADN per poder clonar-los. Els dinosaures clonats formaran part del parc juràssic en el que es basa la pel·lícula.

És cert que es pot extraure ADN a partir d’ossos, molt utilitzat en la genètica forense. Igual que el tema de la clonació, el qual va ser conegut per l’ovella Dolly, el primer gran animal clonat a partir d’una cèl·lula adulta el juliol de 1996. Però la pel·lícula va més enllà i planteja la possibilitat de reimplantar, en el món actual, espècies ja extingides i desafiar la selecció natural.

Video 2. Tràiler Parc Juràssic (Font: YouTube)

REFERÈNCIES

MireiaRamos-catala2

Insects are becoming smaller: miniaturization

According to different studies, multicellular organisms tend to become smaller and smaller through time. This phenomenon is called miniaturization and is considered one of the most significative evolutionary trends among insects. Miniaturization is a driving force for diversity and evolutionary novelties, even though it must deal with some limitations.

Learn more about this phenomenon and met some of the most extreme cases of miniaturization among insects through this post.

Why are animals becoming smaller?

For some years now, multiple studies suggest there is a widely extended trend to miniaturization among multicellular animals (i. e. organisms composed by more than one cell).

Miniaturization is a remarkable natural phenomenon headed to the evolution of extremely small bodies. This process has been observed in different non-related groups of animals:

  • Shrews (Soricomorpha: Soricidae), mammals.
  • Hummingbirds (Apodiformes: Trochilidae), birds.
  • Diverse groups of insects and arachnids.

To know more about giant insects, you can read Size matters (for insects)!

Diversification and speciation processes have given place to lots of new species through time, all of them constantly competing for limited space and food sources. This scenario turns even more drastic in tropical regions, where diversification rates are extremely high.

Learn about the ecological niche concept by reading “The living space of organisms“.

Facing the increasing demands of space and resources, evolution has given place to numerous curious phenomena such as miniaturization to solve these problems: by becoming smaller, organisms (either free-living or parasites) gain access to new ecological niches, get new food sources and avoid predation.

Despite many animals tend to miniaturization, this phenomenon is more frequently observed among arthropods, being one of their most remarkable evolutionary trends. Moreover, arthropods hold the record of the smallest multicellular organisms known to date, some of which are even smaller than an amoeba!

Guinness World Record of the smallest insects

The smallest arthropods are crustaceans belonging to the subclass Tantulocarida, which are ectoparasites of other groups of crustaceans, such as copepods or amphipodes. The species Tantulacus dieteri is still considered the smallest species of arthropods worldwide, which barely measures 85 micrometers (0,085 millimeters), thus being smaller than many unicellular life beings.

However, insects do not lag far behind.

Mymaridae

Mymaridae (or fairyflies) are a family of wasps inside the superfamily Chalcidoidea from temperate and tropical regions. Adults, ranging from 0.5 to 1 millimeter, develop as parasites of other insects’ eggs (e. g. bugs, Heteroptera). For this reason, fairyflies are very valuable as biological control agents of some harmful pests. Also, they are amongst the smallest insects worldwide.

Currently, the one holding the record as the smallest known adult insect is the apterous (wingless) male of the species Dicopomorpha echmepterygis from Costa Rica, with a registered minimum size of 0.139 millimeters. They neither have eyes nor mouthparts, and their legs endings are deeply modified to get attached to the females (somewhat bigger and winged) time enough to fertilize them. They are even smaller than a paramecium, a unicellular organism!

You can read “Basic microbiology (I): invisible world” to know more about unicellular organisms.

Male of D. echmepterygis. Link.

Fairyflies also include the smallest winged insects worldwide: the species Kikiki huna from Hawaii, with and approximate size of 0.15 millimeters.

Trichogrammatidae

Like fairyflies, trichogrammatids are tiny wasps of the superfamily Chalcidoidea that parasite eggs of other insects, especially lepidopterans (butterflies and moths). Adults of almost all the species measure less than 1 millimeter and are distributed worldwide. Adult males of some species are wingless and mate with their own sisters within the host egg, dying shortly after without even leaving it.

The genus Megaphragma contains two of the smallest insects worldwide after fairyflies: Megaphragma caribea (0.17 millimeters) and Megaphragma mymaripenne (0.2 millimeters), from Hawaii.

A) M. mymaripenne; B) Paramecium caudatum. Link.

Trichogrammatids also have one of the smallest known nervous systems, and that of the species M. mymaripenne is one of the most reduced and specials worldwide, as it is composed by only 7400 neurons without nucleus. During the pupae stage, this insect develops neurons with functional nuclei which are able to synthetize enough proteins for the entire adulthood. Once adulthood is reached, neurons lose their nuclei and become smaller, thus saving space.

Ptiliidae

Ptiliidae is a cosmopolitan family of tiny beetles known for including the smallest non-parasitic insects worldwide: the genera Nanosella and Scydosella.

Ptiliidae eggs are very large in comparison with the adult female size, so they can develop a single egg at a time. Other species undergo parthenogenesis.

Learn some more about parthenogensis by reading “Immaculate Conception…in reptiles and insects“.

Currently, the smallest Ptiliidae species known and so the smallest non-parasitic (free living) insect worldwide is Scydosella musawasensis (0.3 millimeters), from Nicaragua and Colombia.

Scydosella musawasensis. Link (original picture: Polilov, A (2015) How small is the smallest? New record and remeasuring of Scydosella musawasensis Hall, 1999 (Coleoptera, Ptiliidae), the smallest known free-living insect).

Consequences of miniaturization

Miniaturization gives rise to many anatomical and physiological changes, generally aimed at the simplification of structures. According to Gorodkov (1984), the limit size of miniaturization is 1 millimeter; under this critical value, the body would suffer from deep simplifications that would hinder multicellular life.

While this simplification process takes places within some groups of invertebrates, insects have demonstrated that they can overcome this limit without too many signs of simplification (conserving a large number of cells and having a greater anatomical complexity than other organisms with a similar size) and also giving rise to evolutionary novelties (e. g. neurons without nucleus as M. mymaripenne).

However, getting so small usually entails some consequences:

  • Simplification or loss of certain physiological functions: loss of wings (and, consequently, flight capacity), legs (or extreme modifications), mouthparts, sensory organs.
  • Considerable changes in the effects associated with certain physical forces or environmental parameters: capillary forces, air viscosity or diffusion rate, all of them associated with the extreme reduction of circulatory and tracheal (or respiratory) systems. That is, being smaller alters the internal movements of gases and liquids.

So, does miniaturization have a limit?

The answer is yes, although insects seem to resist to it.

There are several hypotheses about the organ that limits miniaturization. Both the nervous and the reproductive systems, as well as the sensory organs, are very intolerant to miniaturization: they must be large enough to be functional, since their functions would be endangered by a limited size; and so, the multicellular life.

.             .            .

Multicellular life reduction seems to have no limits. Will we find an even smaller insect? Time will tell.

Main picture: link.

Insectos cada vez más pequeños: el fenómeno de la miniaturización

Según apuntan algunos estudios, los organismos multicelulares tienden a hacerse cada vez más pequeños. Este proceso, conocido como miniaturización, es una de las principales tendencias evolutivas de los insectos. La miniaturización es un motor para la diversidad y las innovaciones evolutivas; sin embargo, también conlleva ciertas limitaciones.

En este artículo, te explicamos en qué consiste este fenómeno y te presentamos algunos de los casos más extremos de miniaturización entre los insectos.

¿Por qué los animales son cada vez más pequeños?

Desde hace años, múltiples estudios apuntan que entre los animales multicelulares (todos aquellos compuestos por más de una célula) existe una tendencia bastante extendida a la miniaturización.

La miniaturización es el proceso evolutivo encaminado a la adquisición de cuerpos extremadamente pequeños. El fenómeno de la miniaturización se ha observado en grupos animales muy diversos, por ejemplo:

  • Musarañas (Soricomorpha: Soricidae), mamíferos.
  • Colibríes (Apodiformes: Trochilidae), aves.
  • Diversos grupos de insectos y de arácnidos.

Para saber más sobre insectos gigantes, puedes leer “¡El tamaño sí que importa (para los insectos)!

A lo largo de la evolución, la diversificación y los fenómenos de especiación han dado lugar a innumerables nuevas especies, todas compitiendo por un espacio y unos nichos ecológicos cada vez más limitados. Esta situación es si cabe más extrema en las regiones tropicales, donde las tasas de diversificación son increíblemente altas.

Aprende más sobre el concepto de nicho ecológico leyendo “El espacio vital de los seres vivos“.

Ante una necesidad cada vez mayor de recursos y espacio, la evolución ha dado lugar a fenómenos tan curiosos como la miniaturización: al hacerse más pequeños, los organismos (ya sean de vida libre o parásitos) pueden acceder a nuevos nichos ecológicos hasta el momento no explotados, adquirir nuevas fuentes de alimento y evitar la depredación.

Si bien existen diversos grupos de animales que tienden a la miniaturización, este fenómeno se manifiesta en mayor proporción entre los artrópodos, siendo una de sus tendencias evolutivas más significativas. Por otro lado, los artrópodos ostentan el récord a presentar algunos de los animales multicelulares más pequeños conocidos hasta la fecha; algunos, incluso tan pequeños como… ¡una ameba!

El Récord Guinness de los insectos más pequeños del mundo

Los artrópodos más pequeños de los que se tiene constancia pertenecen a la subclase de crustáceos Tantulocarida, conocidos por ser ectoparásitos de otros crustáceos de mayor tamaño, como copépodos o anfípodos. La especie Tantulacus dieteri es considerada hasta la fecha la especie de artrópodo más pequeña del mundo, con tan solo 85 micrómetros (0,085 milímetros), mucho más pequeño que algunos seres unicelulares.

Sin embargo, los insectos no se quedan atrás.

Mymaridae

Los mimáridos son una familia de avispas de la superfamilia Chalcidoidea propias de regiones templadas y tropicales. Los adultos, usualmente de 0,5 a 1 milímetro de longitud, viven como parásitos de huevos de otros insectos (p. ej. chinches). Debido a su estilo de vida, se los considera de gran importancia en el control biológico de plagas. Además, se encuentran entre los insectos más pequeños del mundo.

Actualmente, el récord al insecto más pequeño del mundo lo ostentan los machos adultos ápteros (sin alas) de la especie de mimárido Dicopomorpha echmepterygis, de Costa Rica, con un tamaño mínimo registrado de 0,139 milímetros. Además de no presentar alas, tampoco tienen ojos ni piezas bucales, y sus patas terminan en una especie de ventosas que les permiten adherirse a las hembras (más grandes y aladas) el tiempo suficiente para fecundarlas. ¡Son más pequeños que un paramecio, un organismo unicelular!

Puedes leer “Microbiología básica (I): el mundo invisible” para saber más sobre organismos unicelulares.

Macho de D. echmepterygis; sin ojos ni piezas bucales, el macho de esta especie vive adherido a una hembra. Link.

No conformes con ostentar este récord, los mimáridos también incluyen el insecto volador más pequeño del mundo: la especie Kikiki huna de Hawaii, con un tamaño aproximado de 0,15 milímetros.

Trichogrammatidae

Igual que los mimáridos, los tricogrammátidos son pequeñas avispas calcidoideas parásitas de huevos de otros insectos, especialmente de lepidópteros (mariposas y polillas). Los adultos de la mayoría de las especies miden menos de 1 milímetro y se distribuyen mundialmente. Los machos de algunas especies son ápteros y se aparean con sus hermanas dentro de los huevos parasitados donde nacen, muriendo poco después sin siquiera abandonar dicho espacio.

El género Megaphragma contiene dos de los insectos más pequeños del mundo después de los mimáridos: Megaphragma caribea (0,17 milímetros) y Megaphragma mymaripenne (0,2 milímetros), de Hawaii.

A) M. mymaripenne; B) Paramecium caudatum. Link.

Los tricogrammátidos presentan uno de los sistemas nerviosos más pequeños conocidos, y el de la especie M. mymaripenne es, hasta la fecha, uno de los más reducidos y especiales del mundo animal: está formado por tan sólo 7400 neuronas sin núcleo, un hecho único hasta la fecha. Durante la fase de pupa, esta especie desarrolla neuronas con núcleos plenamente funcionales que sintetizan proteínas suficientes para toda la etapa adulta del insecto. Al alcanzar la fase adulta, las neuronas pierden el núcleo y se vuelven más pequeñas, lo que ahorra mucho espacio.

Ptiliidae

Los ptílidos son una familia cosmopolita de pequeños escarabajos caracterizada por incluir los insectos no parásitos más pequeños del mundo, pertenecientes a los géneros Nanosella y Scydosella.

Los huevos de los ptílidos son muy grandes en comparación con el tamaño de las hembras adultas, por lo que éstas sólo desarrollan y ponen un único huevo cada vez. Por otro lado, muchas especies experimentan partenogénesis.

Conoce el fenómeno de la partenogénesis leyendo “Inmaculada Concepción… en reptiles e insectos“.

Actualmente, la especie de escarabajo más pequeña conocida y, por consiguiente, la especie de insecto no parásito (de vida libre) más pequeña del mundo, es Scydosella musawasensis (0,3 milímetros), citada de Nicaragua y Colombia.

Scydosella musawasensis. Link (imagen original: Polilov, A (2015) How small is the smallest? New record and remeasuring of Scydosella musawasensis Hall, 1999 (Coleoptera, Ptiliidae), the smallest known free-living insect).

Consecuencias de la miniaturización

La miniaturización conlleva toda una serie de modificaciones anatómicas y fisiológicas, generalmente encaminadas a la simplificación de estructuras. Según Gorodkov (1984), el límite de la miniaturización se encontraba en 1 milímetro, por debajo del cual se producirían grandes simplificaciones que harían inviable la vida multicelular.

Si bien esta simplificación ocurre en ciertos grupos de invertebrados, los insectos han demostrado sobradamente que pueden superar este umbral sin demasiados signos de simplificación (conservando un gran número de células y presentando una mayor complejidad anatómica que otros organismos de tamaño similar), e incluso dar lugar a estructuras novedosas (como el caso de las neuronas sin núcleo de M. mymaripenne).

Aunque los insectos llevan muy bien esto de la miniaturización, hacerse tan pequeño no siempre sale gratis:

  • Simplificación o pérdida de ciertas funciones fisiológicas: pérdida de alas (y, consecuentemente, de la capacidad de vuelo), patas (o modificaciones extremas de las mismas), aparato bucal, órganos sensoriales.
  • Cambios considerables en los efectos asociados a ciertas fuerzas físicas o a parámetros ambientales: fuerzas capilares, viscosidad del aire o tasa de difusión, todos ellos asociados a la reducción extrema de los sistemas circulatorio y traqueal (o respiratorio). Es decir, ser más pequeño altera los movimientos internos de gases y líquidos.

Entonces, ¿la miniaturización tiene límite?

La respuesta es . Aunque los insectos se resisten a él.

Existen varias hipótesis al respecto, cada una con un órgano distinto como elemento limitante. De todos ellos, el sistema nervioso y el reproductivo, además de los órganos sensoriales, son bastante intolerantes a la miniaturización; deben ser lo suficientemente grandes para que sean funcionales. Por debajo de un tamaño crítico, sus funciones se verían comprometidas y, con ellas, la vida multicelular.

.             .            .

La vida animal multicelular parece no tener freno a la hora de reducirse. ¿Encontraremos algún insecto aún más pequeño? Las investigaciones lo dirán.

Imagen de portada: link.

Insectes cada cop més petits: el fenòmen de la miniaturització

Segons alguns estudis, els organismes multicel·lulars tendeixen a fer-se cada vegada més petits. Aquest procés, conegut com miniaturització, és una de les principals tendències evolutives dels insectes. La miniaturització és un motor per a la diversitat i les innovacions evolutives; tanmateix, també dóna lloc a certes limitacions.

T’expliquem en què consisteix aquest fenomen i et presentem alguns dels casos més extrems de miniaturització entre els insectes.

Per què els animals són cada cop més petits?

Des de fa anys, múltiples estudis apunten que entre els animals multicel·lulars (tots aquells formats per més d’una cèl·lula) hi ha una tendència força estesa a la miniaturització.

La miniaturització és el procés evolutiu encaminat a l’adquisició de cossos extremadament petits. El fenomen de la miniaturització s’ha observat en grups animals molt diversos, per exemple:

  • Musaranyes (Soricomorpha: Soricidae), mamífers.
  • Colibrís (Apodiformes: Trochilidae), aus.
  • Diversos grups d’insectes i d’aràcnids.

Per saber més sobre insectes gegants, pots llegir “La mida sí que importa (pels insectes)!

Al llarg de l’evolució, la diversificació i els fenòmens d’especiació han donat lloc a moltíssimes noves espècies, totes competint per un espai i uns nínxols ecològics cada vegada més limitats. Aquesta situació és encara més extrema en les regions tropicals, on les taxes de diversificació són increïblement altes.

Aprèn més sobre el concepte de nínxol ecològic llegint “L’espai vital dels éssers vius“.

Davant d’una necessitat creixent de recursos i espai, l’evolució ha donat lloc a fenòmens tan curiosos com la miniaturització: fent-se més petits, els organismes (ja siguin de vida lliure o paràsits) poden accedir a nous nínxols ecològics, adquirir noves fonts d’aliment i evitar la depredació.

Si bé existeixen diversos grups d’animals que tendeixen a la miniaturització, aquest fenomen es manifesta en major proporció entre els artròpodes, sent una de les seves tendències evolutives més significatives. D’altra banda, els artròpodes ostenten el rècord a presentar alguns dels animals multicel·lulars més petits coneguts fins a dia d’avui; alguns, fins i tot tan petits com … una ameba!

El Rècord Guinness dels insectes més petits del món

Els artròpodes més petits pertanyen a la subclasse de crustacis Tantulocarida, coneguts per ser ectoparàsits d’altres crustacis de major mida, com copèpodes o amfípodes. L’espècie Tantulacus dieteri és considerada fins a dia d’avui l’espècie d’artròpode més petita del món, amb només 85 micròmetres (0,085 mil·límetres), molt més petit que alguns éssers unicel·lulars.

Tanmateix, els insectes no es queden enrere.

Mymaridae

Els mimàrids són una família de vespes de la superfamília Chalcidoidea pròpies de regions temperades i tropicals. Els adults, usualment de 0,5 a 1 mil·límetre de longitud, viuen com a paràsits d’ous d’altres insectes (p. ex. xinxes). Com a conseqüència del seu estil de vida, se’ls considera de gran importància en el control biològic de plagues. A més a més, es troben entre els insectes més petits del món.

Actualment, el rècord als insectes més petits del món l’ostenten els mascles adults àpters (sense ales) de l’espècie de mimàrid Dicopomorpha echmepterygis, de Costa Rica, amb una mida mínima registrada de 0,139 mil·límetres. A banda de no presentar ales, tampoc tenen ulls ni peces bucals, i les seves potes acaben en una mena de ventoses que els permeten adherir-se a les femelles (més grans i alades) el temps suficient per fecundar-les. Són més petits que un parameci, un organisme unicel·lular!

Pots llegir “Microbiologia bàsica (I): el món invisible” per saber més sobre organismes unicel·lulars.

Mascle de D. echmepterygis; sense ulls ni peces bucals, el mascle d’aquesta espècie viu adherit a la femella. Link.

Els mimàrids també inclouen l’insecte volador més petit del món: l’espècie Kikiki huna de Hawaii, d’una mida aproximada de 0,15 mil·límetres.

Trichogrammatidae

Igual que els mimàrids, els tricogrammàtids són petits calcidoïdeus paràsits d’ous d’altres insectes, especialment de lepidòpters (papallones i arnes). Els adults de la majoria de les espècies mesuren menys d’1 mil·límetre i es distribueixen mundialment. Els mascles d’algunes espècies són àpters i s’aparellen amb les seves germanes dins dels ous parasitats on neixen, morint poc després sense ni tan sols abandonar aquest espai.

El gènere Megaphragma conté dos dels insectes més petits del món després dels mimàrids: Megaphragma caribea (0,17 mil·límetres) i Megaphragma mymaripenne (0,2 mil·límetres), de Hawaii.

A) M. mymaripenne; B) Paramecium caudatum. Link.

Els tricogrammàtids presenten un dels sistemes nerviosos més petits coneguts, i el de l’espècie M. mymaripenne és, fins a dia d’avui, un dels més reduïts i especials del món animal: està format per tan sols 7400 neurones sense nucli, un fet únic. Durant la fase de pupa, aquesta espècie desenvolupa neurones amb nuclis plenament funcionals que sintetitzen proteïnes suficients per a tota l’etapa adulta de l’insecte. Un cop assolida l’adultesa, les neurones perden el nucli i esdevenen petites, fet que estalvia molt d’espai.

Ptiliidae

Els ptílids són una família cosmopolita de petits escarabats caracteritzada per incloure els insectes no paràsits més petits del món, pertanyents als gèneres Nanosella i Scydosella.

Els ous dels ptílids són molt grans en comparació amb la mida de les femelles adultes, de manera que aquestes només desenvolupen i posen un únic ou cada vegada. D’altra banda, moltes espècies experimenten partenogènesi.

Coneix el fenomen de la partenogènesi llegint “Immaculada Concepció … en rèptils i insectes“.

Actualment, l’espècie d’escarabat més petita coneguda i, per tant, l’espècie d’insecte no paràsit (de vida lliure) més petita del món, és Scydosella musawasensis (0,3 mil·límetres), citada de Nicaragua i Colòmbia.

Scydosella musawasensis. Link (imatge original: Polilov, A (2015) How small is the smallest? New record and remeasuring of Scydosella musawasensis Hall, 1999 (Coleoptera, Ptiliidae), the smallest known free-living insect).

Conseqüències de la miniaturització

La miniaturització comporta tot un seguit de modificacions anatòmiques i fisiològiques, generalment adreçades a la simplificació d’estructures. Segons Gorodkov (1984), el límit de la miniaturització es trobava en 1 mil·límetre, per sota del qual es produirien grans simplificacions que farien inviable la vida multicel·lular.

Si bé aquesta simplificació ocorre en certs grups d’invertebrats, els insectes han demostrat que poden superar aquest llindar sense massa signes de simplificació (conservant un gran número de cèl·lules i presentant una major complexitat anatòmica que altres organismes de mida similar) i, fins i tot, donar lloc a estructures noves (com el cas de les neurones sense nucli de M. mymaripenne).

Tot i que els insectes porten molt bé això de la miniaturització, fer-se tan petit no sempre surt gratis:

  • Simplificació o pèrdua de certes funcions fisiològiques: pèrdua d’ales (i, conseqüentment, de la capacitat de vol), potes (o modificacions extremes de les mateixes), peces bucals, òrgans sensorials.
  • Canvis considerables en els efectes associats a certes forces físiques o a paràmetres ambientals: forces capil·lars, viscositat de l’aire o taxa de difusió, tots ells associats a la reducció extrema dels sistemes circulatori i traqueal (o respiratori). És a dir, ser més petit altera els moviments interns de gasos i líquids.

Així doncs, la miniaturització té un límit?

La resposta és . Tot i que els insectes s’hi resisteixen.

Existeixen diverses hipòtesis sobre aquest tema, cadascuna amb un òrgan diferent com a element limitant. De tots ells, el sistema nerviós i el reproductiu, a més dels òrgans sensorials, són força intolerants a la miniaturització; han de ser prou grans perquè siguin funcionals. Per sota d’una mida crítica, les seves funcions es veurien compromeses i, amb elles, la vida multicel·lular.

.             .            .

La vida animal multicel·lular sembla no tenir fre a l’hora de reduir-se. Descobrirem algun insecte encara més petit? Les investigacions i el temps ens ho diran.

Imatge de portada: link.