Pleurodeles_waltl_BUD

Regeneración de extremidades, del ajolote al ser humano

La regeneración de partes del cuerpo perdidas o dañadas en los animales es conocida desde hace varios siglos. En 1740 el naturalista Abraham Trembley observó a un pequeño cnidario que podía regenerar su cabeza si se la cortaban, por lo que lo llamó Hydra, en referencia al monstruo de la mitología griega que podía regenerar sus múltiples cabezas si se las cortaban. Posteriormente, se descubrió que había muchas otras especies animales con capacidades regenerativas. En esta entrada hablaremos sobre estos animales.

Regeneración en el reino animal

La regeneración de partes del cuerpo está mucho más extendida entre los diferentes grupos de invertebrados que de vertebrados. Este proceso puede ser bidireccional, en el que ambos trozos del animal regeneran las partes que les faltan para generar dos animales (cómo en la hidra, las planarias, los gusanos y las estrellas de mar), o unidireccional, en el que el animal pierde una extremidad pero solo la regenera sin que se formen dos animales (artrópodos, moluscos y vertebrados). Entre los vertebrados, peces y anfibios son los que presentan mayores capacidades regenerativas, aunque muchos lagartos y algunos mamíferos pueden regenerar sus colas.

ch14f01Imagen de Matthew McClements sobre la regeneración bidireccional en planàrias, hidras y estrellas de mar. Extraído de Wolbert's Principles of Development.

La regeneración se puede dar de dos maneras distintas:

  • Regeneración sin proliferación celular activa o “morphalaxis”. En este modo, la parte del cuerpo ausente es recreada principalmente mediante la remodelación de células preexistentes. Esto es lo que ocurre en la Hydra, en la que las partes perdidas se regeneran sin la creación de material nuevo. Por lo tanto, si se secciona una hidra por la mitad, obtendremos dos versiones más pequeñas de la hidra original.
Vídeo de un experimento en el que se ha seccionado una Hydra en diferentes trozos. Vídeo de Apnea.
  • Regeneración con proliferación celular o “epimorfosis”. En éste, la parte perdida se regenera mediante proliferación celular o sea, que se crea “de nuevo”. Ésta en la mayoría de casos se produce mediante la formación de una estructura especializada llamada blastema, masa de células madre sin diferenciar que aparece en fenómenos de regeneración celular.

Casi todos los grupos de animales con capacidades regenerativas presentan regeneración con formación de blastema. Aun así, el origen de las células madre del blastema varía según el grupo. Mientras que las planarias presentan células madre pluripotentes (que pueden diferenciarse a cualquier tipo celular) repartidas por todo el cuerpo, los vertebrados presentan células específicas en cada tipo de tejido (cartílago, músculo, piel…) que sólo generaran células de los tejidos donde se encuentre el blastema.

Entre los vertebrados terrestres, las lagartijas y los urodelos son los que muestran mayores habilidades regenerativas. A continuación veremos cómo lo consiguen y las aplicaciones que esto tiene en la medicina actual.

Colas prescindibles

Cuando eres un pequeño animal que está siendo perseguido por un gato u otro depredador, probablemente te salga más rentable perder tu preciada cola a perder tu vida. Algunos vertebrados terrestres han evolucionado siguiendo esta filosofía, y ellos mismos pueden desprenderse de su cola voluntariamente mediante un proceso llamado autotomía caudal. Esto les permite huir de sus depredadores, los cuáles se entretienen con la cola perdida que sigue moviéndose.

 Vídeo en el que se vé cómo algunas lagartijas como este vanzosaurio de cola roja (Vanzosaura rubricauda) tienen colas de colores brillantes para atraer la antención de los depredadores. Vídeo de Jonnytropics.

La autotomía o autoamputación, se define como un comportamiento en el que el animal se desprende de una o varias partes del cuerpo. La autotomía caudal la encontramos en muchas especies de reptiles y en dos especies de ratones espinosos del género Acomys. Entre los reptiles, encontramos autotomía caudal en los lacértidos, los geckos, los escincos o eslizones y en los tuataras.

Acomys.cahirinus.cahirinus.6872Foto de un ratón espinoso del Cairo (Acomys cahirinus), un mamífero que es capaz de desprenderse de su cola y regenerarla. Foto de Olaf Leillinger.

En los reptiles, la fractura de la cola se da en zonas concretas de las vértebras caudales que de por sí están debilitadas. La autotomía se puede dar de dos formas distintas: la autotomía intravertebral, en la que las vértebras del centro de la cola tienen planos de fractura transversales preparados para romperse si se les aplica suficiente presión, y la autotomía intervertebral, en la cual la cola se rompe entre las vértebras por constricción muscular.

0001-3765-aabc-201520130298-gf03Modelo tridimensional de los planos de fractura de la cola de un lagarto y la regeneración post-autotomía de un tubo cartilaginoso. Imagen extraída de Joana D. C. G. de Amorim et al.

La autotomía caudal permite huir al animal, pero le saldrá caro. Muchos reptiles utilizan la cola como reservorio de grasas y perder este almacén de energía suele ser perjudicial para el animal. Por eso se sabe que muchos lagartos, una vez ha desaparecido la amenaza, buscan su cola perdida y se la comen, para al menos recuperar la energía que tenían acumulada en forma de grasa. Además, regenerar una nueva cola es un proceso costoso energéticamente.

DSCN9467Foto de una lagartija parda (Podarcis liolepis) que ha perdido la cola. Foto de David López Bosch.

La regeneración de la cola en los reptiles difiere de la de anfibios y peces en que no se forma el blastema, y en que en vez de regenerarse realmente las vértebras caudales, se forma un tubo de cartílago. La nueva cola no es tan móvil y suele ser más corta que la original, y suele regenerarse completamente al cabo de unas semanas. La mayoría de lagartos pueden regenerar la cola varias veces, pero algunos cómo el lución (Anguis fragilis) sólo pueden hacerlo una vez. En ocasiones, la cola original no se rompe del todo pero se activan los mecanismos de regeneración, cosa que puede dar a que nos podamos encontrar a lagartijas y salamanquesas con más de una cola.

056 (2)Detalle de la cola de una salamanquesa común (Tarentola mauritanica) que ha regenerado la cola sin acabar de perder la cola original. Foto de Rafael Rodríguez.

Urodelos, los reyes de la regeneración

De todos los tetrápodos, los anfibios son los que presentan las mayores capacidades regenerativas. Durante la fase larvaria de la mayoría de especies, tanto la cola como las extremidades (si las presentan) pueden ser regeneradas tras su pérdida. La comunidad científica cree que esto se debe a que en los anfibios el desarrollo de las extremidades y otros órganos se retrasan hasta el momento de la metamorfosis. Aun así, ranas y sapos (anuros) sólo conservan sus poderes regenerativos durante su fase de renacuajo, perdiéndolos al llegar a la edad adulta.

Wood_frog_tadpoleRenacuajo de rana de bosque (Rana sylvatica) que, cómo en todos los anfibios, pospone el desarrollo de las extremidades hasta el momento de la metamorfosis. Foto de Brian Gratwicke.

En cambio, muchas salamandras y tritones (urodelos) conservan sus poderes regenerativos durante toda su vida. Aunque muchas especies presentan autotomía caudal, a diferencia de las lagartijas, los urodelos regeneran completamente, no sólo la cola, sino prácticamente cualquier tejido corporal perdido. De todas las especies conocidas, el ajolote (Ambystoma mexicanum), un anfibio neoténico que llega a la edad adulta sin sufrir metamorfosis, ha servido como organismo modelo para el estudio de la formación del blastema que precede a la regeneración.

 Vídeo en el que se habla del ajolote, este curiosos anfibio que se encuentra en grave peligro de extinción. Vídeo de Zoomin.TV Animals.

La regeneración que se da en las salamandras tiene fases genéticamente similares a las que sufren el resto de vertebrados al desarrollar los distintos tejidos y órganos durante el desarrollo embrionario. En el ajolote (y en el resto de urodelos) la regeneración después de la amputación de una extremidad pasa por tres fases distintas:

  • Curación de la herida: Durante la primera hora tras la amputación, células epidérmicas migran a la zona de la herida. El cierre de la herida se produce más o menos a las dos horas e intervienen los mismos mecanismos que en el resto de vertebrados. Aun así, la regeneración completa de la piel se retrasa hasta el final de la regeneración.
  • Desdiferenciación: Esta segunda fase comienza a las 24 horas de la amputación y es cuando se forma el blastema. Éste está compuesto por células de los tejidos especializados de la zona de amputación que pierden sus características (obtienen la capacidad de proliferar y diferenciarse de nuevo), y de células derivadas del tejido conectivo que migran a la zona de amputación. Cuando estas células de diferente origen se acumulan y forman el blastema, se inicia la proliferación celular.
  • Remodelación: Para el inicio de la tercera fase, es imprescindible la formación de un blastema con células de diversos orígenes. Una vez formado el blastema de células desdiferenciadas, la formación de la nueva extremidad sigue el mismo patrón que el de las extremidades de cualquier vertebrado durante el desarrollo embrionario (incluso intervienen los mismos genes).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Esquema de la formación del blastema en el pez zebra (Danio rerio) otro organismo modelo. Imagen de Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recientemente se han encontrado fósiles de diversos grupos de tetrápodos primitivos que presentan rastros de regeneración. Se han encontrado pruebas de regeneración de extremidades en fósiles de temnospóndilos (Apateon, Micromelerpeton y Sclerocephalus) y de lepospóndilos (Microbrachis y Hyloplesion). Esta amplia gama de géneros de tetrápodos basales que presentan regeneración y el hecho de que muchos peces también la presenten, ha llevado a muchos científicos a plantearse si los diferentes grupos de tetrápodos primitivos presentaban capacidad de regeneración y ésta se perdió en los antepasados de los amniotas (reptiles, aves y mamíferos).

Axolotl_ganz
Foto de un ajolote, por LoKiLeCh.

Aun así, se cree que la información genética de formación del blastema podría encontrarse en el ADN de los amniotas aunque estaría en estado latente. De las tres fases del proceso de regeneración, la única que es exclusiva de los urodelos es la fase de desdiferenciación, ya que la fase de curación es igual a la cicatrización en el resto de vertebrados y la de remodelación es igual a la formación de extremidades durante la embriogénesis. Actualmente se están llevando a cabo multitud de estudios sobre cómo reactivar los genes latentes que promueven la formación del blastema en otros vertebrados, como por ejemplo los seres humanos.

Algunos órganos humanos como el riñón y el hígado ya tienen cierta capacidad de regeneración, pero gracias a la investigación con células madre en animales como las salamandras y las lagartijas, actualmente es posible regenerar dedos, genitales y partes de la vejiga, el corazón y los pulmones. Como hemos visto, los diferentes animales capaces de regenerar miembros seccionados encierran el secreto que podría salvar a miles de personas. Recordemos esto la próxima vez que oigamos que cientos de especies de anfibios y reptiles se encuentran en peligro por culpa de la mano del hombre.

Difusió-castellà

Referencias

Para la elaboración de esta entrada se han utilizado las siguientes fuentes:

2 pensaments a “Regeneración de extremidades, del ajolote al ser humano”

Comentaris / Comentarios / Comments:

Fill in your details below or click an icon to log in:

WordPress.com Logo

Esteu comentant fent servir el compte WordPress.com. Log Out / Canvia )

Twitter picture

Esteu comentant fent servir el compte Twitter. Log Out / Canvia )

Facebook photo

Esteu comentant fent servir el compte Facebook. Log Out / Canvia )

Google+ photo

Esteu comentant fent servir el compte Google+. Log Out / Canvia )

Connecting to %s