Arxiu d'etiquetes: salamandra

Genitales animales: anfibios, reptiles y mamíferos

¡ATENCIÓN! ESTE ARTÍCULO ESTÁ ANTICUADO.

LEE AQUÍ LA VERSIÓN MEJORADA Y ACTUALIZADA

Después de la primera entrega sobre los genitales de aves y peces, cerramos capítulo sobre las curiosidades de los penes, vaginas y demás órganos reproductores de anfibios, reptiles y mamíferos.

GENITALES EN ANFIBIOS

Como ya vimos en el artículo anterior, la cloaca es el orificio donde confluyen los aparatos digestivo, reproductor  y excretor. Todos los anfibios poseen cloaca, así como los reptiles, aves y algunos peces (tiburones y rayas) y mamíferos. Las larvas de los anfibios se caracterizan por sufrir una gran transformación conocida como metamorfosis.

No te pierdas el exitoso artículo sobre anfibios ladrones de esperma.

ANUROS

De reproducción externa, el apareamiento de muchos anuros se produce en el agua. En los anuros (anfibios sin cola, como las ranas) el macho, de menor tamaño que la hembra, se agarra a la hembra firmemente. Este abrazo se denomina amplexo. Las contracciones de la hembra al expulsar los huevos estimulan al macho para rociarlos de esperma en el mismo momento que son expulsados. Los huevos quedan unidos por una masa gelatinosa que adquiere diferentes formas según la especie.

Amplexo de Litoria xanthomera. Foto: Rainforest harley

Las ranas macho del género Ascaphus tienen una pseudocola que no es más que una extensión de la cloaca. Esto les ayuda a evitar pérdidas de esperma en las aguas de gran corriente donde viven, al depositar el esperma dentro de la cloaca de la hembra. Son pues los únicos anuros con fertilización interna.

Rana con cola (Ascaphus truei). Foto: Mokele

URODELOS

Casi todos los urodelos (anfibios con cola, como salamandras y tritones) presentan fecundación interna. El macho se sitúa delante la hembra y libera unos sacos (espermatóforos) que contienen los espermatozoides. La hembra camina sobre uno de ellos, lo recoge con los labios de la cloaca y los situa en la espermateca, una cavidad donde los espermatozoides esperan a que los huevos pasen por la cloaca para irlos fecundando. La hembra pone los huevos fecundados uno a uno pegándolos en plantas acuáticas, excepto en algunas especies de salamandra, en las que la hembra los retiene y nacen larvas vivas (ovoviviparismo).

Espermatóforos de salamandra (Ambystoma sp.). Foto: Placeuvm

ÁPODOS

Los ápodos o cecilias son anfibios sin patas con fecundación interna, pero a diferencia de los anuros se produce inseminación interna.  Esto es posible gracias a una pseudo-falo (phallodeum) que tienen los machos, que insertan en la cloaca de la hembra durante dos o tres horas.

Phallodeum de una cecilia. Foto cedida por: Danté Fenolio

En las especies ovíparas (25%), los huevos son custodiados por la madre, el resto de especies son ovovivíparas (75%). En algunas especies ovovivíparas las crías ya nacen metamorfoseadas, en otras como larva. Durante su estancia en el interior de la madre, se alimentan de células del oviducto, que raspan con sus dientes especiales. En el caso de la especie ovípara Boulengerula taitana, las larvas se alimentan de la piel de la madre lo que les permite crecer 10 veces su tamaño en una semana.

GENITALES EN REPTILES

REPTILES ESCAMOSOS

Los reptiles escamosos (orden Squamata), es decir, lagartos, serpientes y anfisbenas (culebrillas ciegas) poseen el pene dividido en dos: es lo que se conoce como hemipene. Se mantiene guardado en el interior de la cola y sale al exterior durante la cópula gracias a los tejidos eréctiles. A pesar de ser doble, durante la cópula sólo introducen en la hembra una de las partes, aunque pueden hacerlo alternativamente. Los extremos pueden ser lisos o presentar púas o estructuras para asegurar el agarre a la cloaca de la hembra.

Lagartija vivípara (Zootoca vivipara) con los hemipenes a la vista. Foto: Charlesjsharp

TORTUGAS

En algunas tortugas marinas, la cloaca conserva la capacidad de intercambio gaseoso, en otras palabras, de respirar. El agua pasa lentamente por ella, lo que permite recoger el oxígeno y llevarlo hasta los pulmones.

Las tortugas macho poseen un pene simple que está plegado en dos en la cloaca, dentro de la cola, por lo que la cola de los machos es más gruesa y larga que la de las hembras. Durante la erección, se llena de fluido, se despliega y sale al exterior, alcanzando un tamaño comparativamente bastante grande.

Pene de tortuga mediterránea (Testudo hermanni). Fuente

COCODRILOS

Los cocodrilos tienen un pene rígido (siempre en erección) escondido dentro del cuerpo que, sale disparado como un resorte al exterior en el momento de la cópula y se oculta de nuevo a la misma velocidad. Según este estudio, el tejido fibroso y colágeno del pene permitiría la no existencia de erección y de tumescencia en el aligator americano.

En este vídeo se puede observar cómo emerge el pene de un aligator americano durante su disección, al tocar el nervio pélvico.

GENITALES EN MAMÍFEROS

MAMÍFEROS MONOTREMAS

Los monotremas son los mamíferos más primitivos, con algunas características reptilianas, como la puesta de huevos y la presencia de cloaca. Ornitorrincos y equidnas son los representantes más conocidos.

El pene de los monotremas tiene 4 cabezas, aunque no todas pueden funcionar simultáneamente. Se usa sólo la mitad, es decir, dos cabezas cada vez. En el caso del ornitorrinco sólo funciona el lado izquierdo, ya que la hembra sólo tiene funcional el ovario izquierdo.

Pene de equidna. Fuente

MAMÍFEROS MARSUPIALES

Los marsupiales son aquellos mamíferos en los que la cría termina su desarrollo en el marsupio, una especie de bolsa que poseen las hembras donde se encuentran las mamas. Los más conocidos son los canguros, koalas, zarigüeyas y el extinto tilacino.

Generalmente las hembras tienen dos vaginas, que encajan con los penes bifurcados de los machos, que se retraen dentro del cuerpo en forma de S cuando están en reposo. Los penes de los marsupiales, a diferencia de algunos placentarios, no poseen ningún hueso en su interior.

Pene de zarigüeya. Foto: Ellen Rathbone

En el caso de los canguros, las hembras poseen tres vaginas (que se unen en una sola abertura al exterior) y dos úteros. Las dos vaginas laterales conducen el esperma hacia los úteros y la central es por donde desciende la cría durante el parto.

Sistema reproductor de las hembras marsupiales. Foto: National Geographic

MAMÍFEROS PLACENTARIOS

HUESO PENEANO Y ERECCIÓN

En los mamíferos placentarios, como los humanos, la cría se desarrolla en el útero y es nutrido mediante la placenta. Muchos machos de placentarios presentan un hueso peneano o báculo. Este hueso permitiría la cópula aunque no haya erección.

Hueso peneano de perro. La flecha señala la ubicación del surco uretral. Foto: Didier Descouens

Algunos placentarios han perdido el báculo: es el caso de los humanos, hienas, équidos (caballos, cebras…) y lagomorfos (conejos, liebres…). En ellos, la erección es posible gracias al llenado de sangre de los cuerpos cavernosos.

DELFINES

En el caso de los delfines, su pene es prensil y sensorial. La punta es giratoria y no es raro verlos palpar el fondo marino con su pene. Esto ha dado lugar a falsos mitos como que los delfines siempre están excitados e intentan copular con cualquier cosa que se les ponga por delante. Esta capacidad táctil también les permitiría estrechar lazos sociales entre ellos, incluso entre machos. Este comportamiento también lo observamos en las orcas.

La vagina de los delfines está llena de pliegues y recovecos para dificultar el acceso del esperma hasta el óvulo, ya sea de machos rivales o de machos con los que la hembra no deseaba aparearse. Si quieres ver cómo encaja el pene en la intrincada vagina del delfín clica aquí.

HIENAS

A simple vista podríamos confundir una hiena macho con una hembra. Las hienas moteadas (Crocuta crocuta) hembra, tienen una larga vagina que se extiende en un clítoris externo del mismo tamaño que el pene masculino. Las crías pues, tienen que atravesar este largo canal al nacer, que sufre grandes desgarros en los primeros partos y en ocasiones las crías mueren por no poder atravesarlo. Además, los labios vaginales también son grandes y llenos de grasa, lo que podría llegar a recordar a unos testículos.

Genitales de la hiena moteada. Fuente: Quora

REFERENCIAS

Mireia Querol Rovira

Genitals animals: amfibis, rèptils i mamífers

Després de la primera part sobre els genitals d’aus i peixos, tanquem capítol sobre les curiositats dels penis, vagines i altres òrgans reproductors d’amfibis, rèptils i mamífers.

GENITALS EN AMFIBIS

Com ja vam veure en l’article anterior, la cloaca és l’orifici on conflueixen els aparells digestiu, reproductor i excretor. Tots els amfibis posseeixen cloaca, així com els rèptils, aus i alguns peixos (taurons i rajades) i mamífers. Les larves dels amfibis es caracteritzen per patir una gran transformació coneguda com metamorfosi .

No et perdis l’exitós article sobre amfibis lladres d’esperma .

ANURS

De reproducció externa, l’aparellament dels anurs (amfibis sense cua, com les granotes) es produeix normalment a l’aigua. En els anurs  el mascle, de menor grandària que la femella, s’agafa a la femella fermament. Aquest abraçada es denomina amplexe. Les contraccions de la femella en expulsar els ous estimulen al mascle per ruixar-los d’esperma en el mateix moment que són expulsats. Els ous queden units per una massa gelatinosa que adquireix diferents formes segons l’espècie.

Amplexe de Litoria xanthomera. Foto: Rainforest harley

Les granotes mascle del gènere Ascaphus tenen una pseudocua que no és més que una extensió de la cloaca. Això els ajuda a evitar pèrdues d’esperma en les aigües de gran corrent on viuen, en dipositar l’esperma dins de la cloaca de la femella. Són doncs els únics anurs amb fertilització interna.

Granota amb cua (Ascaphus truei). Foto: Mokele


URODELS

Gairebé tots els urodels (amfibis amb cua, com salamandres i tritons) presenten fecundació interna. El mascle se situa davant la femella i allibera uns sacs (espermatòfors) que contenen els espermatozoides. La femella camina sobre un d’ells, el recull amb els llavis de la cloaca i els situa a l’espermateca, una cavitat on els espermatozoides esperen que els ous passin per la cloaca per anar-los fecundant. La femella posa els ous fecundats un per un enganxant-los a les plantes aquàtiques, excepte en algunes espècies de salamandra, en que la femella els reté i neixen larves vives (ovoviviparisme).

Espermatòfors de salamandra (Ambystoma sp.). Foto: Placeuvm

 

ÀPODES

Els àpodes o cecílies són amfibis sense potes amb fecundació interna, però a diferència dels anurs es produeix inseminació interna. Això és possible gràcies a un pseudo-fal·lus (phallodeum) que tenen els mascles, que s’insereixen a la cloaca de la femella durant dues o tres hores.

Phallodeum d’una cecília. Foto cedida per: Danté Fenolio

En les espècies ovípares (25%) els ous són custodiats per la mare, la resta d’espècies són ovovivípares (75%). En algunes espècies ovovivípares les cries ja neixen metamorfosades, en altres com larva. Durant la seva estada a l’interior de la mare, s’alimenten de cèl·lules de l’oviducte, que raspen amb les seves dents especials. En el cas de l’espècie ovípara Boulengerula taitana, les larves s’alimenten de la pell de la mare, el que els permet créixer 10 vegades la seva grandària en una setmana.

GENITALS EN RÈPTILS

RÈPTILS ESCAMOSOS

Els rèptils escamosos (ordre Squamata), és a dir, llangardaixos, serps i anfisbeníds (serpetes cegues) posseeixen el penis dividit en dos: és el que es coneix com hemipenis. Es manté guardat a l’interior de la cua i surt a l’exterior durant la còpula gràcies als teixits erèctils. Tot i ser doble, durant la còpula només s’introdueixen a la femella una de les parts, encara que poden fer-ho alternativament. Els extrems poden ser llisos o presentar punxes o estructures per assegurar l’adherència a la cloaca de la femella.

Sargantana vivípara (Zootoca vivipara) amb els hemipenis a la vista. Foto: Charlesjsharp

TORTUGUES

En algunes tortugues marines, la cloaca conserva la capacitat d’intercanvi gasós, en altres paraules, de respirar. L’aigua passa lentament per ella, el que permet recollir l’oxigen i portar-lo fins als pulmons.

Les tortugues mascle posseeixen un penis simple que està plegat en dos a la cloaca, dins de la cua, de manera que la cua dels mascles és més gruixuda i llarga que la de les femelles. Durant l’erecció, s’omple de fluid, es desplega i surt a l’exterior, aconseguint una mida comparativament bastant gran.

Penis de tortuga mediterrània (Testudo hermanni). Font

COCODRILS

Els cocodrils tenen un penis rígid (sempre a erecció) amagat dins del cos que surt disparat com un ressort a l’exterior en el moment de la còpula i s’amaga de nou a la mateixa velocitat. Segons aquest estudi , el teixit fibrós i col·lagen del penis permetria la no existència d’erecció i detumescencia.

En aquest vídeo es pot observar com emergeix el penis d’un aligàtor americà durant la seva disseció, en tocar el nervi pèlvic.

GENITALS EN MAMÍFERS

MAMÍFERS MONOTREMES

Els monotremes són els mamífers més primitius, amb algunes característiques reptilianes, com la posta d’ous i la presència de cloaca. Ornitorrincs i equidnes són els representants més coneguts.

El penis dels monotremes tenen 4 extremitats, encara que no totes poden funcionar simultàniament. S’usa només la meitat, és a dir, dues bifurcacions cada vegada. En el cas de l’ornitorinc només funciona la banda esquerra, ja que la femella només té funcional l’ovari esquerre.

Penis d’equidna. Font

MAMÍFERS MARSUPIALS

Els marsupials són aquells mamífers en què la cria acaba el seu desenvolupament en el marsupi, una mena de bossa que posseeixen les femelles on es troben les mames. Els més coneguts són els cangurs, coales, opòssums i l’extint llop marsupial.

Generalment les femelles tenen dues vagines, que encaixen amb els penis bifurcats dels mascles, que es retreuen dins el cos en forma de S quan estan en repòs. Els penis dels marsupials, a diferència d’alguns placentaris, no posseeixen cap os al seu interior.

Penis d’opòssum. Foto: Ellen Rathbone

En el cas dels cangurs, les femelles posseeixen tres vagines (que s’uneixen en una sola obertura a l’exterior) i dos úters. Les dues vagines laterals condueixen l’esperma cap als úters i la central és per on baixa la cria durant el part.

Sistema reproductor de les femelles marsupials. Foto: National Geographic

MAMÍFERS PLACENTARIS

OS PENIÀ I ERECCIÓ

En els mamífers placentaris, com els humans, la cria es desenvolupa a l’úter i és nodrit mitjançant la placenta. Molts mascles de placentaris presenten un os penià o bàcul. Aquest os permet la còpula encara que no hagi erecció.

Os del penis del gos. La fletxa assenyala la ubicació del solc uretral. Foto: Didier Descouens

Alguns placentaris han perdut el bàcul: és el cas dels humans, hienes, èquids (cavalls, zebre …) i lagomorfs (conills, llebres …). En ells, l’erecció és possible gràcies a l’ompliment de sang dels cossos cavernosos.

DOFINS

En el cas dels dofins, el seu penis és prènsil i sensorial. La punta és giratòria i no és rar veure’ls palpar el fons marí amb el seu penis. Això ha donat lloc a falsos mites com que els dofins sempre estan excitats i intenten copular amb qualsevol cosa que se’ls posi per davant. Aquesta capacitat tàctil també els permetria estrènyer llaços socials entre ells, fins i tot entre mascles. Aquest comportament també l’observem en les orques .

La vagina dels dofins està plena de plecs i racons per dificultar l’accés de l’esperma fins a l’òvul, ja sigui de mascles rivals o de mascles amb els que la femella no desitjava aparellar-se. Si vols veure com encaixa el penis a la intricada vagina del dofí clica aquí.

HIENES

A primera vista podríem confondre una hiena mascle amb una femella. Les hienes rialleres (Crocuta crocuta) femella, tenen una llarga vagina que s’estén en un clítoris extern de la mateixa mida que el penis masculí. Les cries doncs, han de travessar aquest llarg canal en néixer, que pateix grans estrips en els primers parts i en ocasions les cries moren per no poder travessar-lo. A més, els llavis vaginals també són grans i plens de greix, el que podria arribar a recordar a uns testicles.

Genitals de la hiena riallera. Fuente: Quora

REFERÈNCIES

Metamorfosis y larvas de anfibios

La palabra anfibio proviene del griego antiguo “amphi”, que significa “ambos” y “bios”, que significa “vida”. Aunque el término anfibio es un adjetivo que sirve para describir a animales que viven tanto en tierra como en el agua, en el caso de los anfibios además hace referencia a las dos etapas vitales por las que pasan, y es que los anfibios nacen en un estado larvario acuático y se convierten en individuos adultos mediante la metamorfosis. En esta entrada os explicaremos cómo funciona la metamorfosis a nivel hormonal, qué cambios anatómicos se dan y las diferencias de dicho proceso entre los diferentes órdenes de lisanfibios.

METAMORFOSIS LISANFIBIA

La metamorfosis está presente en los tres órdenes actuales de lisanfibios. Este proceso ya ocurría en los primeros tetrápodos terrestres, los cuáles debían poner sus huevos en el agua. Aun así, no todas las especies actuales presentan metamorfosis externa, ya que algunas nacen como adultos en miniatura (como el 20% de especies de anuros). En estas especies, la metamorfosis se da igualmente en el interior del huevo antes de nacer, lo que se conoce como metamorfosis interna.

tadpoles_-_agalychnis_callidryas_cutted-min
Huevos de rana verde de ojos rojos (Agalychnis callydryas) justo antes de eclosionar, por Geoff Gallice.

Como norma general, los lisanfibios ponen sus huevos en el agua. En la gran mayoría de especies, de los huevos gelatinosos nacerán larvas acuáticas, aunque su morfología varía mucho entre las diferentes especies. Aun así, las larvas de todos los lisanfibios presentan una serie de características comunes:

  • Branquias externas, mediante las cuales respiran bajo el agua.
  • Ausencia de párpados y de pigmentos retinianos asociados a la visión fuera del agua.
  • Presencia de la línea lateral (o equivalente), órgano sensorial característico de los peces que les permite percibir las vibraciones del agua.
  • Piel menos gruesa.
  • Adaptaciones anatómicas a la vida subacuática.
dsc_0061-nef-min
Foto de salamandra común (Salamandra salamandra) en la que se aprecian las branquias externas y el aspecto pisciforme de la larva, por David López.

Durante la metamorfosis, muchas estructuras que son útiles durante el estado larvario serán reabsorbidas mediante la apoptosis, un proceso de muerte celular controlada. En muchos casos este proceso está altamente condicionado por varios factores ambientales como la densidad de población, la disponibilidad de alimento y la presencia de ciertas sustancias químicas en el agua.

CAMBIOS HORMONALES

A nivel hormonal, la metamorfosis se caracteriza por la interacción de dos tipos de hormonas diferentes: las hormonas tiroideas y la prolactina. Mientras que las hormonas tiroideas, como la tiroxina (segregadas por la glándula tiroides), estimulan el proceso de metamorfosis, la prolactina (segregada por la glándula pituitaria o hipófisis) la inhibe. La concentración de estas dos hormonas (regulada por el eje Hipotálamo→Hipófisis→Tiroides) es lo que controla las diferentes fases de la metamorfosis.

thyroid_system-min
Esquema de Mikael Häggström del eje hipotálamo (verde), hipófisis o pituitaria (rojo), tiroides (azul) en seres humanos y la liberación de hormonas tiroideas.

PREMETAMORFOSIS

Es la fase de crecimiento de la larva, y dura alrededor de los primeros 20 días de vida (dependiendo de la especie). Esta fase se caracteriza por una baja secreción de hormonas tiroideas y por una alta concentración de prolactina, que inhibe el proceso de metamorfosis. Esto se debe a que el sistema hipotálamo→hipofisario aún es inmaduro.

PROMETAMORFOSIS

Es un período de crecimiento reducido con cambios morfológicos lentos, debidos al aumento en la concentración de tiroxina en sangre a causa del crecimiento de la glándula tiroides. Además, comienza a desarrollarse el eje hipotálamo→hipofisario, el cual hará aumentar aún más la concentración de tiroxina y disminuirá la de prolactina, abriendo paso a grandes cambios morfológicos.

CLÍMAX METAMÓRFICO

Es el momento en el que el eje hipotálamo→hipófisis→tiroides se encuentra en su máximo rendimiento y se dan grandes cambios morfológicos en la larva, la cual se acabará convirtiendo en un adulto en miniatura. Finalmente, los niveles de tiroxina se empezarán a restablecer por un sistema de retroalimentación negativa de ésta sobre el hipotálamo y la hipófisis.

th-graph-min
Esquema extraído de Brown & Cai 2007, sobre los niveles generales de hormonas tiroideas durante las diferentes etapas de la metamorfosis.

CAMBIOS MORFOLÓGICOS

A lo largo del proceso de metamorfosis, las larvas sufrirán una serie de cambios anatómicos que les permitirán adquirir la forma adulta. Algunos cambios comunes a la mayoría de especies son la adquisición de párpados y nuevos pigmentos retinales, la reabsorción de las branquias y la pérdida de la línea lateral. Otros cambios morfológicos varían entre los diferentes órdenes. Por ejemplo en las cecilias (orden Apoda) las larvas se parecen a adultos en miniatura pero con branquias externas. Además, la mayoría de cecilias presentan metamorfosis interna y al nacer ya no tienen ningún rastro de las branquias.

new-species-burrowing-caecilian-egg-closeup_48946_600x450-min
Foto de Blog do Nurof-UFC del huevo de una Cecilia, dentro del cual vemos a la larva branquiada.

En los urodelos (orden Urodela), los cambios metamórficos externos tampoco son muy espectaculares. Las larvas se parecen bastante a los adultos ya que sus extremidades se desarrollan temprano, aunque tienen branquias externas filamentosas, no tienen párpados y la aleta caudal está más desarrollada. Incluso su dieta es carnívora como la de los adultos. Aun así, la gran diversidad de salamandras y tritones hace que los ciclos vitales de las diferentes especies varíen mucho, desde especies vivíparas que paren a crías vivas, hasta especies neoténicas que mantienen características larvarias durante la vida adulta.

urodela-min
Foto de David Álvarez del parto vivíparo de una salamandra común (Salamandra salamandra), y foto de Faldrian de un ajolote (Ambystoma mexicanum), una especie neoténica.

Las ranas y los sapos (orden Anura) son el grupo en el que los cambios metamórficos son más dramáticos. La larva de los anuros es tan distinta que se llama renacuajo, el cual se diferencia del adulto tanto en el aspecto como en la fisiología y el comportamiento. Aunque los renacuajos nacen con branquias externas, éstas quedan cubiertas a los pocos días por unos pliegues de piel que forman una cámara branquial. Además los renacuajos tienen un cuerpo redondeado y sin patas y una cola larga y comprimida que les permite nadar velozmente en el agua.

litoria_ewingii_tadpole-min
Foto de J. J. Harrison de un renacuajo de rana arborícola parda meridional (Litoria ewingii).

Una de las principales diferencias entre los anuros adultos y los larvarios es la dieta. Mientras que las ranas y los sapos adultos son depredadores, los renacuajos son larvas herbívoras, alimentándose o bien filtrando partículas vegetales suspendidas en el agua, o bien raspando las algas pegadas a las rocas con un conjunto de “dientes” córneos que presentan algunas especies. Esto se refleja en su aparato digestivo en forma de espiral y extremadamente largo a fin de poder digerir las grandes cantidades de materia vegetal de la que se alimentan. Los renacuajos son máquinas de comer incansables, con algunas especies filtradoras siendo capaces de filtrar hasta ocho veces su volumen corporal de agua por minuto.

developing_internal_organs_of_a_tadpole-min
Foto de Denise Stanley de un renacuajo, donde vemos tanto los “dientes” córneos, como el intestino en forma de espiral.

Tras la metamorfosis, los renacuajos reabsorberán las branquias y la cola, reducirán la longitud de su aparato digestivo, desarrollarán las patas y los pulmones, convirtiéndose en metamórficos preparados para la vida en tierra.

dscn1328-bufo-spinosus-min
Sapo espinoso justo después de la metamorfosis (Bufo spinosus) de David López.

Como hemos visto, el proceso de metamorfosis varía mucho entre las diferentes especies de cada orden. Este proceso hace que la mayoría de lisanfibios pasen parte de sus vidas en el agua y parte en tierra, hecho representativo de la transición de los primeros tetrápodos del medio acuático al medio terrestre. Además, la gran diversidad de nichos ecológicos que ocupan tanto los adultos como las larvas de las diferentes especies y el amplio abanico de factores ambientales que afectan al proceso de metamorfosis, hacen de los lisanfibios grandes bioindicadores del estado de salud de los ecosistemas.

REFERENCIAS

Se han consultado las siguientes fuentes durante la elaboración de esta entrada:

difusio-castella

Metamorfosi i larves d’amfibis

La paraula amfibi prové del grec antic “amphi”, que vol dir “ambdós” i “bios”, que vol dir “vida”. Tot i que el terme amfibi és un adjectiu que serveix per descriure a animals que poden viure tant a terra com a l’aigua, en el cas dels amfibis a més, fa referencia a les dues etapes vitals per les que passen, i és que els amfibis neixen en un estat larvari aquàtic i esdevenen individus adults mitjançant la metamorfosi. En aquesta entrada us explicarem com funciona la metamorfosi a nivell hormonal, quins canvis anatòmics es donen i les diferències d’aquest procés entre els diferents ordres de lissamfibis.

METAMORFOSI LISSAMFÍBIA

La metamorfosi es troba present en els tres ordres de lissamfibis. Aquest procés ja es donava en els primers tetràpodes terrestres, els quals havien de pondre els ous a l’aigua. Tanmateix, no totes les espècies actuals presenten metamorfosi externa, ja que algunes neixen com adults en miniatura (com el 20% d’espècies d’anurs). En aquestes espècies la metamorfosi es dóna igualment a l’interior de l’ou abans de néixer, el que es coneix com metamorfosi interna.

tadpoles_-_agalychnis_callidryas_cutted-min
Ous de granota verda d’ulls vermells (Agalychnis callydryas) just abans d’eclosionar, per Geoff Gallice.

Com a norma general, els lissamfibis ponen els seus ous a l’aigua. En la gran majoria d’espècies, dels ous gelatinosos naixeran larves aquàtiques, tot i que la seva morfología varia molt entre les diferents espècies. Tot i així, les larves de tots els lissamfibis presenten un seguit de característiques comunes:

  • Brànquies externes, mitjançant les quals respiren sota l’aigua.
  • Absència de parpelles i de pigments retinals associats a la visió fora de l’aigua.
  • Presència de la línia lateral (o equivalent), òrgan sensorial característic dels peixos que els permet percebre les vibracions de l’aigua.
  • Pell menys gruixuda.
  • Adaptacions anatòmiques a la vida subaquàtica.
dsc_0061-nef-min
Foto de salamandra comuna (Salamandra salamandra) on s’aprecien les brànquies externes i l’aspecte pisciforme de la larva, per David López.

Durant la metamorfosi, moltes estructures que són útils durant l’estat larvari seran reabsorbides mitjançant l’apoptosi, un procés de mort cel·lular controlada. En molts casos aquest procés està altament condicionat per varis factors ambientals com la densitat de població, la disponibilitat d’aliment i la presència de certes substàncies químiques a l’aigua.

CANVIS HORMONALS

A nivell hormonal, la metamorfosi es caracteritza per la interacción de dos tipus d’hormones diferents: les hormones tiroïdals i la prolactina. Mentre que les hormones tiroïdals, com la tiroxina (segregades per la glàndula tiroide), estimulen el procés de metamorfosi, la prolactina (segregada per la glàndula pituïtària o hipòfisi) l’inhibeix. La concentració d’aquestes dues hormones (regulada per l’eix Hipotàlem→Hipòfisi→Tiroide) és el que controla les diferents fases de la metamorfosi.

thyroid_system-min
Esquema de Mikael Häggström de l’eix hipotàlem (verd), hipòfisi o pituïtària (vermell), tiroide (blau) en éssers humans i l’alliberació d’hormones tiroïdals.

PREMETAMORFOSI

És la fase de creixement de la larva, i dura al voltant dels 20 primers dies de vida (depenent de l’espècie). Aquesta fase es caracteritza per una baixa secreció d’hormones tiroïdals i per una alta concentració de prolactina, que inhibeix el procés de metamorfosi. Això es dèu a que el sistema hipotàlem→hipofisari encara és immadur.

PROMETAMORFOSI

És un període de creixement reduït amb canvis morfològics lents, deguts a l’augment en la concentració de tiroxina en sang a causa del creixement de la glándula tiroides. A més, comença a desenvolupar-se l’eix hipotàlem→hipofisari, el qual farà augmentar encara més la concentració de tiroxina i disminuirà la de prolactina, obrint pas a grans canvis morfològics.

CLÍMAX METAMÒRFIC

És el moment en el que l’eix hipotàlem→hipòfisi→tiroides es troba al màxim rendiment i es dónen grans canvis morfològics en la larva, la qual s’acabarà convertint en un adult en miniatura. Finalment, els nivells de tiroxina es començaran a reestablir per un sistema de retroalimentació negativa d’aquesta sobre l’hipotàlem i l’hipòfisi.

th-graph-min
Esquema extret de Brown & Cai 2007, sobre els nivells generals d’hormones tiroïdals durant les diferents etapes de la metamorfosi.

CANVIS MORFOLÒGICS

Al llarg del procés de metamorfosi, les larves patiran un seguit de canvis anatòmics que els permetran adquirir la forma adulta. Alguns canvis comuns a la majoria d’espècies són l’adquisició de parpelles i nous pigments retinals, la reabsorció de les brànquies i la pèrdua de la línia lateral. Altres canvis morfològics varien entre els diferents ordres. Per exemple en les cecílies (ordre Apoda) les larves s’assemblen a adults en miniatura però amb brànquies externes. A més, la majoria de cecílies presenten metamorfosi interna i al néixer ja no tenen cap rastre de les brànquies.

new-species-burrowing-caecilian-egg-closeup_48946_600x450-min
Foto de Blog do Nurof-UFC de l’ou d’una cecília, dins del qual veiem a la larva branquiada.

En els urodels (ordre Urodela), els canvis metamòrfics externs tampoc són gaire espectaculars. Les larves s’assemblen força als adults a que les seves extremitats es desenvolupen als pocs dies, tot i que tenen brànquies externes filamentoses, no tenen parpelles i la aleta caudal està més desenvolupada. Fins i tot la seva dieta és carnívora com la dels adults. Tanmateix,  la gran diversitat de salamandres i tritons fa que els cicles vitals de les diferents espècies varïin molt; des d’espècies vivípares que pareixen a cries vives, fins a espècies neotèniques que mantenen característiques larvàries durant la vida adulta.

urodela-min
Foto de David Álvarez del part vivípar d’una salamandra comuna (Salamandra salamandra), i foto de Faldrian d’un axolot (Ambystoma mexicanum) una espècie neotènica.

Les granotes i els gripaus (ordre Anura) són el grup en el que els canvis metamòrfics són més dramàtics. La larva dels anurs és tant diferent que s’anomena capgròs, el qual es diferencia de l’adult tant en l’aspecte com en la fisiologia i el comportament. Tot i que els capgrossos nexien amb brànquies externes, aquestes queden cobertes als pocs dies per uns plecs de pell que formen una cambra branquial. A més els capgrossos tenen un cos arrodonit i sense potes i una cua llarga i comprimida que els permet nedar veloçment a l’aigua.

litoria_ewingii_tadpole-min
Foto de J. J. Harrison d’un capgròs de granota arborícola bruna del sud (Litoria ewingii).

Una de les principals diferència entre els anurs adults i els larvaris és la dieta. Mentre que les granotes i els gripaus adults són depredadors, els capgrossos són larves herbívores, alimentant-se o bé filtrant partícules vegetals suspeses a l’aigua, o bé raspant les algues enganxades a les roques amb un seguit de “dents” còrnies que presenten algunes espècies. Això es reflecteix en el seu aparell digestiu en forma d’espiral i extremadament llarg per tal de poder digerir les grans quantitats de materia vegetal de la que s’alimenten. Els capgrossos són màquines de menjar incansables, amb algunes espècies filtradores essent capaces de filtrar fins a vuit vegades el seu volum corporal d’aigua per minut.

developing_internal_organs_of_a_tadpole-min
Foto de Denise Stanley d’un capgròs, on veiem tant les “dents” còrnies, com l’intestí en forma d’espiral.

Després de la metamorfosi, els capgrossos reabsorbiran les brànquies i la cua, reduiran la llargada de l’aparell digestiu, desenvoluparan les potes i els pulmons, convertint-se en metamòrfics preparats per la vida a terra.

dscn1328-bufo-spinosus-min
Gripau espinós just després de la metamorfosi (Bufo spinosus) per David López.

Com hem vist, el procés de la metamorfosi varia molt entre les diferents espècies de cada ordre. Aquest procés fa que la majoria de lissamfibis passin part de les seves vides a l’aigua i part a la terra, fet representatiu de la transició dels primers tetràpodes del medi aquàtic al medi terrestre. A més, la gran diversitat de nínxols ecològics que ocupen tant els adults com les larves de les diferents espècies i l’ampli ventall de factors ambientals que afecten al procés de metamorfosi, converteixen als lissamfibis en grans bioindicadors de l’estat de salut dels ecosistemes.

REFERÈNCIES

S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:

difusio-catala

Híbridos y ladrones de esperma: cleptones anfibios

En biología un híbrido es el resultado de la reproducción de dos progenitores de especies genéticamente diferentes, aunque en la mayoría de casos los híbridos o no son viables o son estériles. Pero a veces, en algunas especies de anfibios los híbridos no sólo son viables, sino que además forman nuevas especies con características especiales. En esta entrada os ponemos dos casos de híbridos de anfibios que forman lo que se conoce como un cleptón y que ponen en duda el concepto tradicional de especie.

¿QUÉ ES UN CLEPTÓN?

Un cleptón o kleptón (abreviado kl.) es una especie que depende de otra especie para completar su ciclo reproductivo. El origen de la palabra cleptón viene del griego “kleptein” que significa “robar”, ya que el cleptón “roba” a otra especie para poder reproducirse. En el caso de los anfibios, los cleptones se han originado por fenómenos de hibridación. Las potentes feromonas sexuales de los anfibios y los coros de múltiples especies en el caso de los anuros, provocan que a veces machos y hembras de diferentes especies intenten aparearse. Aun así los híbridos sólo son viables entre especies muy emparentadas.

Dentro de las diferentes especies cleptón podemos encontrar dos métodos diferentes según el tipo de concepción: los zigocleptones, en los que hay una fusión del material genético del óvulo y del espermatozoide, y los ginocleptones, en los que el óvulo necesita estimulación por parte del espermatozoide pero no incorpora su material genético.

Los diferentes cleptones de anfibios suelen estar constituidos por hembras (hay pocos machos o ninguno) que utilizan el esperma de otra especie para perpetuar el cleptón. Como los cleptones de anfibios a veces dependen de varias especies emparentadas, esto puede hacer que se creen “complejos de especies” donde varias especies muy parecidas presenten zonas de hibridación y relaciones muy complicadas entre ellas. A continuación os ponemos dos ejemplos de cleptones, uno en anuros europeos y otro en urodelos americanos.

HIBRIDOGÉNESIS EN RANAS VERDES

Las ranas verdes europeas (género Pelophylax) forman lo que se conoce como “complejo hibridogenético” en el cual los híbridos de distintas especies forman cleptones que no se pueden reproducir entre sí, sino que han de reproducirse con un miembro de la especie progenitora, “robando” o “parasitando” su esperma para sobrevivir.

Pelophylax_esculentus_-_Amplexus_01
Foto de Bartosz Cuber de dos ranas comestibles (Pelophylax kl. esculentus) en amplexo. Este híbrido es el más conocido tanto por su amplia distribución, como por ser considerado una delicia en Francia.

En la hibridogénesis de las ranas verdes, el material genético de ambos progenitores se combina para formar el híbrido resultante (zigocleptón). Estos híbridos (normalmente siempre hembras) tendrán la mitad del genoma de una especie y la mitad de la otra. Aun así, al no poder reproducirse con otros híbridos similares, durante la gametogénesis se elimina el material genético de una de las especies progenitoras. Así, al aparearse con un individuo de la especie cuyo material genético ha eliminado, volverán a formar un híbrido.

Hybirds
Esquema sobre la dotación genética de los diferentes cleptones de Pelophylax. En este complejo hibridogenético intervienen cuatro especies “naturales”: la rana europea común (Pelophylax ridibundus, genoma RR), la rana de Lessona (Pelophylax lessonae genoma LL), la rana verde ibérica (Pelophylax perezi, genoma PP) y la rana italiana (Pelophylax bergeri, genoma BB).

La rana comestible común (Pelophylax kl. esculentus, genoma RL) proviene de la hibridación entre la rana común europea y la rana de Lessona. La rana comestible italiana (Pelophylax kl. hispanicus, genoma RB) proviene de un híbrido entre la rana común europea y la rana italiana. Finalmente la rana de Graf (Pelophylax kl. grafi, genoma RP) proviene de la hibridación de la rana comestible común (en la cual se elimina el ADN de la rana de Lessona de los gametos) y la rana verde ibérica.

Hybridogenesiisisisi
Esquemas de Darekk2 sobre los procesos hibridogenéticos de los diferentes cleptones de ranas europeas. Los círculos grandes indican el genoma de los individuos y los círculos pequeños el material genético de los gametos.

Como vemos, la dotación genética de la rana común europea es la que se encuentra en los tres cleptones. Estos cleptones eliminan el material genético de la especie con la que comparten el hábitat de sus gametos y mantienen el de la rana común europea (R). Así por ejemplo, la rana comestible (P. kl esculentus) elimina de sus óvulos el ADN de la rana de Lessona (L), con la cual se encuentra en su distribución natural y se reproduce, dando lugar a más ranas comestibles (RL). La rana común europea raramente se reproduce con alguno de los híbridos y si lo hace, salen ranas comunes europeas normales.

SALAMANDRAS CON VARIOS GENOMAS

Las salamandras del género Ambystoma, generalmente conocidas como salamandras topo, son un género endémico de América del Norte y son los únicos representantes actuales de la familia Ambystomatidae. Cinco de estas especies forman el llamado “complejo Ambystoma, en el cual estas especies contribuyen a la composición genética de un linaje unisexual de salamandras que se reproducen por ginogénesis (ginocleptón). Basándose en el ADN mitocondrial de las poblaciones unisexuales, se cree que este complejo proviene de un fenómeno de hibridación de hace unos 2,4-3,9 millones de años.

ambystomert complexx
Este complejo está formado por las siguientes cinco especies: la salamandra de puntos azules (Ambystoma laterale de genoma LL, foto de Fyn Kynd Photography), la salamandra de Jefferson (Ambystoma jeffersonianum de genoma JJ, foto de Vermont Biology), la salamandra de boca chica (Ambystoma texanum de genoma TT, foto de Greg Schechter), la salamandra de riachuelo (Ambystoma barbouri de genoma BB, foto de Michael Anderson) y la salamandra tigre (Ambystoma tigrinum de genoma TiTi, foto de Carla Isabel Ribeiro).

En la ginogénesis de este linaje compuesto únicamente por hembras, el óvulo necesita la activación por parte de un espermatozoide para empezar a dividirse y desarrollarse, aunque antes debe duplicar su material genético mediante un proceso de endomitosis para evitar la formación de zigotos haploides (con la mitad de información genética) inviables. Aun así, como con los reptiles partenogenéticos, a la larga la falta de recombinación genética puede pasar factura a los individuos. Es por esto que este linaje unisexual de salamandras tiene la capacidad de incorporar ocasionalmente el genoma entero de los machos de cuatro de las especies que forman el complejo (actualmente no se ha visto que la salamandra de riachuelo se aparee con ningún individuo unisexual).

ginogino
Esquema de Bi, Bogart & Fu (2009) en el que vemos las diferentes vías que puede tomar la reproducción ginogenética de las salamandras topo.

Estos individuos no mezclan el genoma adquirido, sino que lo suman al suyo. Esto provoca que dentro de este linaje podamos encontrar individuos diploides, triploides, tetraploides e incluso hasta pentaploides (aunque cuanto más aumenta la ploidía menos viables son los individuos), dependiendo de la cantidad de genomas diferentes que hayan ido incorporando las generaciones anteriores.

mes ibrids
Dentro del cleptón, la combinación más común son los triploides basados en la salamandra de puntos azules y la de Jefferson, con los genomas LLJ (izquierda, imagen de David Misfud) y JJL (derecha, imagen de Nick Scobel), aunque el número de combinaciones es increíblemente grande, motivo por el cual los científicos no han podido asignar un nombre científico válido a este grupo de origen híbrido.

A diferencia de las ranas verdes, resulta muy difícil definir un nombre científico dentro de este cleptón de Ambystoma, ya que los genomas de las diferentes especies se pueden encontrar en diferentes combinaciones y proporciones en los diferentes individuos unisexuales.

REFERENCIAS

Durante la elaboración de esta entrada se han utilizado las siguientes fuentes:

Difusió-castellà

Híbrids i lladres d’esperma: cleptons amfibis

En biologia un híbrid és el resultat de la reproducció de dos progenitors d’espècies genèticament diferents, tot i que en la majoria de casos els híbrids o no són viables o són estèrils. Però a vegades, en algunes espècies d’amfibis els híbrids no només són viables, sinó que a més formen noves espècies amb característiques especials. En aquesta entrada us posem dos casos d’híbrids d’amfibis que formen el que es coneix com un cleptó i que posen en dubte el concepte tradicional d’espècie.

QUÈ ÉS UN CLEPTÓ?

Un cleptó o kleptó (abreviat kl.) és una espècie que depèn d’una altra espècie per a completar el seu cicle reproductiu. L’orígen de la paraula cleptó vé del grec “kleptein” que vol dir “robar”, ja que el cleptó “roba” a l’altra espècie per a poder reproduïr-se. En el cas dels amfibis, els cleptons s’han originat per fenòmens d’hibridació. Les potents feromones sexuals del amfibis i els cors de múltiples espècies en el cas dels anurs, provoquen que a vegades mascles i femelles de diferents espècies intentin aparellar-se. Tanmateix els híbrids només són viables entre espècies properament emparentades.

Dintre de les diferents espècies cleptó hi podem trobar dos mètodes diferents segons el tipus de concepció: els zigocleptons, en els que hi ha una fusió del material genètic de l’òvul i de l’espermatozou, i els ginocleptons, en els que l’òvul necessita estimulació per part de l’espermatozou però no incorpora el seu material genètic.

Els diferents cleptons d’amfibis solen estar constituïts principalment per femelles (hi han molts pocs mascles o cap) que utilitzen l’esperma d’una altra espècie per perpetuar el cleptó. Com que els cleptons d’amfibis a vegades depenen de vàries espècies emparentades, això pot fer que es creïn “complexes d’espècies” on vàries espècies molt semblants presentin zones d’hibridació i relacions molt complicades entre elles. A continuació us posem dos exemples de cleptons, un en anurs europeus i un en urodels americans.

HIBRIDOGÈNESI EN GRANOTES VERDES

Les granotes verdes europees (gènere Pelophylax) formen el que es coneix com a “complexe hibridogenètic” en el qual els híbrids de diferents espècies formen cleptons que no es poden reproduïr entre sí, sinó que han de reproduïr-se amb un membre de l’espècie progenitora, “robant” o “parasitant” el seu esperma per a sobreviure.

Pelophylax_esculentus_-_Amplexus_01
Foto de Bartosz Cuber de dues granotes comestibles (Pelophylax kl. esculentus) en amplexe. Aquest híbrid és el més conegut tant per la seva àmplia distribució, com per ser considerat una delicadesa a França.

En l’hibridogènesi de les granotes verdes el material genètic dels dos progenitors es combina per a formar l’híbrid resultant (zigocleptó). Aquests híbrids (normalment sempre femelles) tindran la meitat del genoma d’una espècie i la meitat de l’altre. Tanmateix, al no poder reproduïr-se amb altres híbrids semblant, durant la gametogènesi s’elimina el material genètic d’una de les espècies progenitores. Així, al aparellar-se amb un individu de l’espècie de la qual ha eliminat el material genètic, tornaran a formar un híbrid.

Hybirds
Esquema sobre la dotació genètica dels diferents cleptons de Pelophylax. En aquest complex hibridogenètic hi intervenen quatre espècies “naturals”: la granota comuna europea (Pelophylax ridibundus, genoma RR), la granota de Lessona (Pelophylax lessonae, genoma LL), la granota verda ibèrica (Pelophylax perezi, genoma PP) i la granota italiana (Pelophylax bergeri, genoma BB).

La granota comestible comuna (Pelophylax kl. esculentus, genoma RL) prové de la hibridació entre la granota comuna europea i la granota de Lessona. La granota comestible italiana (Pelophylax kl. hispanicus, genoma RB) prové d’un híbrid entre la granota comuna europea i la granota italiana. Finalment la granota de Graf (Pelophylax kl. grafi, genoma RP) prové de la hibridació de la granota comestible comuna (en la qual s’elimina l’ADN de la granota de Lessona de les gàmetes) i la granota verda ibèrica.

Hybridogenesiisisisi
Esquemes de Darekk2 sobre els processos hibridogenètics dels diferents cleptons de granotes europees. Els cercles grans indiquen el genoma dels individus i els cercles petits el material genètic de les gàmetes.

Com veiem la dotació genètica de la granota comuna europea és la que es troba present en tots tres cleptons. Aquests cleptons eliminen el material genètic de l’espècie amb la que comparteixen l’hàbitat de les seves gàmetes i mantenen el de la granota comuna europea (R). Així per exemple, la granota comestible (P. kl. esculentus) elimina dels seus òvuls l’ADN de la granota de Lessona (L), amb la qual es troba en la seva distribució natural i s’hi reprodueix, donant a més granotes comestibles (RL). La granota comuna europea rarament es reprodueix amb algún dels híbrids i si ho fa, surten granotes comunes europees normals.

SALAMANDRES AMB VARIS GENOMES

Les salamandres del gènere Ambystoma, generalment conegudes com a salamandres talp, són un gènere endèmic d’Amèrica del Nord i són els únics representants actuals de la família Ambystomatidae. Cinc d’aquestes espècies formen l’anomenat “complexe Ambystoma, en el qual aquestes espècies contribueixen a la composició genètica d’un llinatge unisexual de salamandres que es reprodueixen per ginogènesi (ginocleptó). Basant-se en l’ADN mitocondrial de les poblacions unisexuals, es creu que aquest complexe prové d’un fenòmen d’hibridació de fa uns 2,4-3,9 milions d’anys.

ambystomert complexx
Aquest complexe està format per les següents cinc espècies: la salamandra de punts blaus (Ambystoma laterale de genoma LL, foto de Fyn Kynd Photography), la salamandra de Jefferson (Ambystoma jeffersonianum de genoma JJ, foto de Vermont Biology), la salamandra de Texas (Ambystoma texanum de genoma TT, foto de Greg Schechter), la salamandra de rierol (Ambystoma barbouri de genoma BB, foto de Michael Anderson) i la salamandra tigre (Ambystoma tigrinum de genoma TiTi, foto de Carla Isabel Ribeiro).

En la ginogènesi d’aquest llinatge compost únicament per femelles, l’òvul necessita l’activació per part d’un espermatozou per començar a dividir-se i desenvolupar-se, tot i que abans ha de duplicar el seu material genètic mitjançant un procés d’endomitosi per evitar la formació de zigots haploïdes (amb la meitat d’informació genètica) inviables. Tanmateix, com en els rèptils partenogenètics, a la llarga la falta de recombinació genètica pot passar factura als individus. Per això, aquest llinatge unisexual de salamandres té la capacitat d’incorporar ocasionalment el genoma sencer dels mascles de quatre de les espècies que formen el complexe (actualment no s’ha vist que la salamandra de rierol s’aparelli amb cap individu unisexual).

ginogino
Esquema de Bi, Bogart & Fu (2009) en el que veiem els diferents camins que pot pendre la reproducció ginogenètica de les salamandres talp.

Aquests individus no barregen el genoma adquirit, sinó que el sumen al seu. Això fa que dins d’aquest llinatge hi puguem trobar individus diploïdes, triploïdes, tetraploïdes i fins i tot pentaploïdes (tot i que com més augmenta la ploïdia menys viables són els individus), depenent de la quantitat de genomes diferents que hagin anat incorporant les generacions anteriors.

mes ibrids
Dins del cleptó, la combinació més comuna són triploïdes basats en la salamandra de punts blaus i la de Jefferson, amb els genomes LLJ (esquerra, imatge de David Misfud) i JJL (dreta, imatge de Nick Scobel), tot i que el nombre de combinacions és increïblement gran, fet pel qual els científics no han pogut assignar un nom científic vàlid a aquest grup d’orígen híbrid.

A diferència de les granotes verdes, resulta molt difícil definir un nom científic dins del cleptó de Ambystoma, ja que els genomes de les diferents espècies es poden trobar en diferents combinacions i proporcions en els diferents individus unisexuals.

REFERÈNCIES

Durant l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Difusió-català

Cómo respirar sin pulmones, al estilo lisanfibio

Aunque la mayoría de vertebrados terrestres dependemos de los pulmones para realizar el intercambio de gases, los lisanfibios además presentan respiración cutánea, respiran a través de la piel. Aunque esto puede parecer una desventaja, ya que deben mantener la piel relativamente húmeda, en esta entrada veremos las ventajas que les confiere la respiración cutánea y cómo en algunos grupos, ésta ha sustituido completamente la respiración pulmonar.

RESPIRAR AGUA O AIRE

Los vertebrados terrestres utilizan los pulmones para realizar el intercambio de gases. Aunque nuestros antepasados acuáticos respiraban mediante branquias, éstas no sirven en el medio terrestre, ya que la gravedad haría que se colapsaran y perdiesen su estructura. Los pulmones, al encontrarse en el interior del cuerpo, pueden mantener su estructura en un ambiente con mayor gravedad. Tanto branquias como pulmones presentan estructuras muy ramificadas para aumentar la superficie de difusión y así, favorecer el intercambio de gases (a mayor superficie, más intercambio).

Giant_Mudskipper_(Periophthalmodon_schlosseri)_(15184970133)Espécimen de saltador del barro gigante (Periophthalmodon schlosseri), un pez del sudeste asiático que puede salir del agua gracias en parte, a la respiración cutánea. Foto de Bernard Dupont.

Aun así, entre los vertebrados existe una tercera forma de intercambio de gases. Aunque no está tan extendida como las branquias o los pulmones, la respiración cutánea la encontramos en varios grupos de animales, como los peces pulmonados y algunos reptiles marinos (tortugas y serpientes marinas). Aun así, los lisanfibios son el grupo que ha llevado la especialización en la respiración cutánea al extremo.

¿CÓMO RESPIRAN LOS LISANFIBIOS?

Los lisanfibios actuales son el grupo de tetrápodos que presentan mayor diversidad de estrategias respiratorias. Aparte de la respiración cutánea presente en todas las especies, la mayoría de lisanfibios nacen en un estado larvario acuático con branquias, y después de la metamorfosis, desarrollan pulmones para respirar en tierra firme.

Las larvas de los urodelos y los ápodos presentan branquias externas filamentosas y muy ramificadas que les permiten respirar bajo el agua. Éstas han de estar en movimiento constante para que haya intercambio de gases. Algunas especies de salamandras neoténicas mantienen las branquias durante la edad adulta. En cambio, los renacuajos de los anuros presentan branquias internas cubiertas por sacos branquiales.

Salamander_larva_closeupRetrato de una larva de salamandra en la que se aprecian les branquias ramificadas y filamentosas. Foto de Brian Gratwicke.

La mayoría de lisanfibios terrestres presentan un par de pulmones simples con pocas ramificaciones y grandes alveolos. Éstos tienen una baja tasa de difusión de gases comparados con los pulmones amniotas. Además, mientras que los amniotas ventilamos los pulmones mediante la expansión de la caja torácica y el diafragma, los lisanfibios han de forzar el aire a los pulmones mediante un sistema de bomba bucal.

Four_stroke_buccal_pumpingEsquema del sistema de respiración pulmonar de los lisanfibios. En el sistema de bomba bucal, la cavidad bucal se llena de aire y después se eleva el suelo de la boca para forzar el aire hacia los pulmones. Imagen de Mokele.

Además de la respiración branquial o pulmonar, los lisanfibios oxigenan la sangre por respiración cutánea. La piel de los lisanfibios es muy delgada y está muy capilarizada (tienen una gran cantidad de vasos sanguíneos). Esto hace que ésta tenga una gran capacidad de difusión de moléculas gaseosas, permitiéndoles la respiración cutánea mediante un sistema contracorriente.

600px-ExchangerflowEsquema modificado de un sistema de intercambio contracorriente. En éste, la sangre desoxigenada (con CO2) circula en dirección contraria al aire (cargado de O2) y entre los dos fluidos se da un intercambio de gases en un intento de igualar la concentración de ambos gases. Imagen modificada de Joe.

La piel de los lisanfibios difiere de la de los amniotas en que no presenta escamas, plumas ni pelo. Esto hace que la piel de los anfibios sea muy permeable tanto a los gases como al agua (lo que les convierte en grandes bioindicadores de los ambientes en los que viven, yq que sus pieles absorben muchos tipos de sustancias solubles). Por eso los lisanfibios han de mantener la piel relativamente húmeda para que el intercambio se pueda llevar a cabo.

KammolchmaennchenMacho de tritón crestado (Triturus cristatus) en la fase nupcial. Las anchas crestas de la cola incrementan la superficie de piel aumentando la difusión de gases. Foto de Rainer Theuer.

Los lisanfibios viven constantemente en un delicado equilibrio en el que la piel se ha de mantener suficientemente húmeda para permitir el intercambio de gases, pero no tan permeable como para que pierdan agua, se deshidraten y mueran. Esto lo consiguen viviendo en ambientes húmedos, o bien creando capas de piel húmeda externas para crear un ambiente acuoso a su alrededor.

Bombay_caecilianFoto de una cecília de Bombay (Ichthyophis bombayensis) un lisanfibio que vive en lodazales y otros hábitats húmedos. Foto de Uajith.

Muchos lisanfibios presentan gran cantidad de piel, cosa que aumenta la superficie respiratoria. Algunos ejemplos son, las papilas vasculares de la rana peluda (Trichobatrachus robustus), los pliegues de piel de las ranas del géneros Telmatobius o las anchas aletas caudales de muchos tritones.

TrichobatrachusGreenDibujo de la rana peluda (Trichobatrachus robustus) en el que se ven las papilas que le dan nombre. Imagen extraída de Proceedings of the Zoological Society of London (1901).

Aunque la mayoría de ranas obtiene gran parte del oxígeno por los pulmones durante el verano, durante las épocas más frías (cuando su metabolismo se ralentiza) muchas especies hibernan en el fondo de lagos helados, realizando el intercambio de gases exclusivamente por vía cutánea.

6887057816_d68fccf4f4_oMuchos lisanfibios de zonas subárticas hibernan bajo el agua, utilizando la piel para extraer oxígeno del agua y expulsar el dióxido de carbono de la sangre. Foto de Ano Lobb.

Los urodelos adultos presentan mucha más diversidad de estrategias respiratorias y además, dentro de éstos encontramos uno de los únicos grupos de vertebrados terrestres que no presentan ningún rastro de pulmones.

VIVIR SIN PULMONES

Dentro del suborden de los salamandroideos encontramos la familia Plethodontidae. Estos animales son conocidos popularmente como salamandras apulmonadas ya que, como su nombre indica, no tienen pulmones y dependen exclusivamente de la piel para realizar el intercambio de gases.

Kaldari_Batrachoseps_attenuatus_02Salamandra esbelta de California (Batrachoseps attenuatus) fotografiada por Kaldari. Esta es un perfecto ejemplo de los cuerpos largos y delgados de los pletodóntidos, que les facilita la difusión de gases.

Estos urodelos se encuentran distribuidos principalmente por las Américas, con algunas especies en la isla de Cerdeña y la Península de Corea. Lo más sorprendente es que los pletodóntidos, como la mayoría de salamandroideos, son animales principalmente terrestres y no presentan fase larvaria acuática. Aunque algunas especies presenten branquias durante el estado embrionario, éstas se pierden antes de nacer y los pulmones no se llegan a desarrollar.

Northern_red_salamander_(Pseudotriton_ruber)Foto de salamandra roja (Pseudotriton ruber) un pletodóntido endémico de la costa atlántica de los Estados Unidos. Foto de Leif Van Laar.

Se cree que esta familia evolucionó en ríos de alta montaña con fuertes corrientes. La presencia de pulmones los hubiera hecho flotar demasiado, cosa que les hubiese dificultado el movimiento en estos hábitats. Las aguas frías de los ríos alpinos son ricas en oxígeno, haciendo que la respiración cutánea fuese suficiente para estos pequeños animales.

Vídeo de Verticalground100 donde se nos muestran algunas especies de pletodóntidos.

Una piel fina y vascularizada (facilita la difusión) y la evolución de cuerpos largos y delgados (facilita el transporte de O2 por todo el cuerpo) hicieron que los pulmones resultaran inútiles para los pletodóntidos.  Actualmente las salamandras apulmonadas son la familia de urodelos más numerosa, y representan más de la mitad de la biomasa animal en muchos ecosistemas norteamericanos. Además, son más activos que la mayoría de lisanfibios, con sistemas nerviosos y sensoriales muy desarrollados, siendo depredadores voraces de artrópodos y otros invertebrados.

3679651745_d678454a1b_oSalamandra zig-zag de Ozark (Plethodon angusticlavius) una curiosa salamandra apulmonada típica del estado de Missouri. Imagen de Marshal Hedin.

Como veis, la respiración cutánea de los lisanfibios les permite hacer cosas que pocos tetrápodos pueden hacer. Pasar todo un invierno sumergidos y vivir en tierra firme sin pulmones son gestas increíbles reservadas a un pequeño grupo de animales. Puede que los lisanfibios aún dependan del medio acuático para sobrevivir, pero como hemos visto, poco tienen de lentos y primitivos, ya que presentan algunas de las adaptaciones fisiológicas más impresionantes del reino animal.

REFERENCIAS

Se han utilizado las siguientes fuentes para la elaboración de esta entrada:

Difusió-castellà

Com respirar sense pulmons, a l’estil lissamfibi

Tot i que la majoria de vertebrats terrestres depenem dels pulmons per realitzar l’intercanvi de gasos, els lissamfibis presenten a més respiració cutània, respiren a través de la pell. Tot i que això pot semblar un desavantatge, ja que han de mantindre la pell relativament humida, en aquesta entrada veurem els avantatges que els confereix la respiració cutània i com en alguns grups, aquesta ha substituït completament la respiració pulmonar.

RESPIRAR AIGUA O AIRE

Els vertebrats terrestres utilitzem els pulmons per a realitzar l’intercanvi de gasos. Tot i que els nostres avantpassats aquàtics respiraven mitjançant brànquies, aquestes no serveixen en el medi terrestre, ja que la gravetat faria que es colapséssin i perdessin la seva estructura. Els pulmons, com que es troben a l’interior del cos, poden mantindre la seva estructura en un ambient amb força més gravetat. Tant les brànquies com els pulmons presenten estructures molt ramificades per augmentar la superfície de difusió i així, afavorir l’intercanvi de gasos (a major superfície, més intercanvi).

Giant_Mudskipper_(Periophthalmodon_schlosseri)_(15184970133)Espècimen de saltador del fang gegant (Periophthalmodon schlosseri), un peix del sud-est asiàtic que pot sortir de l’aigua gràcies en part, a la respiració cutània. Foto de Bernard Dupont.

Tanmateix, entre els vertebrats existeix una tercera forma d’intercanvi de gasos. Tot i que no està tant extesa com les brànquies o els pulmons, la respiració cutània la trobem en varis grups d’animals, com els peixos pulmonats i alguns rèptils marins (tortugues i serps marines). Tanmateix, els lissamfibis són el grup que ha dut l’especialització en la respiració cutània a l’extrem.

COM RESPIREN ELS LISSAMFIBIS?

Els lissamfibis actuals són el grup de tetràpodes que presenten major diversitat d’estratègies respiratòries. A part de la respiració cutània present en totes les espècies, la majoria de lissamfibis neixen en un estat larvari aquàtic amb brànquies i després de la metamorfosi, desenvolupen pulmons per a respirar a terra ferma.

Les larves dels urodels i els àpodes presenten brànquies externes filamentoses i molt ramificades que els permeten respirar sota l’aigua. Aquestes han d’estar en moviment constant per a que hi hagi intercanvi de gasos. Algunes espècies de salamandres neotèniques mantenen les brànquies durant l’edat adulta. En canvi, els capgrossos dels anurs presenten brànquies internes cobertes per sacs branquials.

Salamander_larva_closeupRetrat d’una larva de salamandra en la que s’aprecien les brànquies ramificades i filamentoses. Foto de Brian Gratwicke.

La majoria de lissamfibis terrestres presenten un parell de pulmons simples amb poques ramificacions i grans alveols. Aquests tenen una baixa taxa de difusió de gasos comparats amb els pulmons dels amniotes. A més, mentres que els amniotes ventilem els pulmons mitjançant l’expansió de la caixa torácica i el diafragma, els lissamfibis han de forçar l’aire als pulmons mitjançant un sistema de bomba bucal.

Four_stroke_buccal_pumpingEsquema del sistema de respiració pulmonar dels lissamfibis. En el sistema de bomba bucal, la cavitat bucal s’omple d’aire i després s’eleva el terra de la boca per forçar l’aire cap als pulmons. Imatge de Mokele.

A més de la respiració branquial o pulmonar, els lissamfibis oxigenen la sang per respiració cutània. La pell dels lissamfibis és molt prima i està molt capil·laritzada (tenen una gran quantiat de vasos sanguinis). Això fa que aquesta tingui una gran capacitat de difusió de molècules gasoses, permetent-los la respiració cutània mitjançant un sistema contracorrent.

600px-ExchangerflowEsquema modificat d’un sistema d’intercanvi contracorrent. En aquest, la sang desoxigenada (amb CO2) circula en direcció contrària a l’aire (carregat d’O2) i entre els dos fluids es dóna un intercanvi de gasos en un intent d’igualar la concentració dels dos gasos. Imatge modificada de Joe.

La pell dels lissamfibis difereix de la dels amniotes en que no presenta escates, plomes o pèl. Això fa que la pell dels lissamfibis sigui molt permeable tant pels gasos com per l’aigua (cosa que els converteix en grans bioindicadors dels ambients on viuen, ja que la seva pell absorbeix molts tipus de substàncies solubles). Per això els lissamfibis han de mantenir la pell relativament humida per a que l’intercanvi es pugui dur a terme.

KammolchmaennchenMascle de tritó crestat (Triturus cristatus) en la fase nupcial. Les amples crestes de la cua incrementen la superfície de pell augmentant la difusió de gasos. Foto de Rainer Theuer.

Els lissamfibis viuen constantment en un delicat equilibri en el que la pell s’ha de mantindre suficientment humida per a permetre l’intercanvi de gasos, però no tant permeable com per a que perdin aigua, es deshidratin i morin. Això ho aconsegueixen vivint en ambients humits, o bé creant capes de pell humida externes per a crear un ambient aquós al seu voltant.

Bombay_caecilianFoto d’una cecília de Bombai (Ichthyophis bombayensis) un lissamfibi que viu en fangars i altres hàbitats humits. Foto de Uajith.

Molts lissamfibis presenten una gran quantitat de pell, cosa que augmenta la superfície respiratòria. Alguns exemples són, les papil·les vasculars de la granota peluda (Trichobatrachus robustus), els plecs de pell de les granotes del gènere Telmatobius o les amples aletes caudals de molts tritons.

TrichobatrachusGreenDibuix de la granota peluda (Trichobatrachus robustus) on es veuen les papil·les que li dónen el nom. Imatge extreta de Proceedings of the Zoological Society of London (1901).

Tot i que la majoria de granotes obtenen gran part de l’oxigen pels pulmons durant l’estiu, durant les èpoques més fredes (quan el seu metabolisme es ralenteix) moltes espècies hivernen al fons de llacs glaçats, realitzant l’intercanvi de gasos exclusivament per via cutània.

6887057816_d68fccf4f4_oMolts lissamfibis de zones subàrtiques hivernen sota l’aigua, utilitzant la pell per extreure oxigen de l’aigua i expulsar diòxid de carboni de la sang. Foto de Ano Lobb.

Els urodels adults presenten molta més diversitat d’estratègies respiratòries i a més, hi trobem un dels únics grups de vertebrats terrestres que no presenten cap rastre de pulmons.

VIURE SENSE PULMONS

Dintre del subordre dels salamandroideus hi trobem la familia Plethodontidae. Aquests animals són coneguts popularment com a salamandres apulmonades ja que, com el seu nom indica, no tenen pulmons i depenen exclusivament de la pell per a realitzar l’intercanvi de gasos.

Kaldari_Batrachoseps_attenuatus_02Salamandra esvelta de Califòrnia (Batrachoseps attenuatus) fotografiada per Kaldari. Aquesta és un perfecte exemple dels cossos allargats i prims dels pletodòntids, que els facilita la difusió de gasos.

Aquests urodels es troben distribuïts principalment per les Amèriques, amb algunes espècies a l’illa de Sardenya i a la Península de Corea. El més sorprenent és que els pletodòntids, com la majoria de salamandroideus, són animals principalment terrestres i no presenten fase larvària aquàtica. Tot i que algunes espècies presenten brànquies durant l’estat embrionàri, aquests les perden abans de néixer i els pulmons mai s’arriben a desenvolupar.

Northern_red_salamander_(Pseudotriton_ruber)Foto de salamandra vermella (Pseudotriton ruber) un pletodòntid endèmic de la costa atlántica dels Estats Units. Foto de Leif Van Laar.

Es creu que aquesta familia va evolucionar en rius d’alta muntanya amb fortes corrents. La presència de pulmons els hauria fet flotar massa, cosa que els hagués dificultat el moviment en aquests hàbitats. Les aigües fredes dels rius alpins són riques en oxigen, fent que la respiració cutània fós suficient per aquests petits animals.

Vídeo de Verticalground100 on se’ns mostren algunes espècies de pletodòntids.

Una pell fina i vascularitzada (facilita la difusió) i l’evolució de cossos llargs i prims (facilita el transport d’O2 per tot el cos) va fer que els pulmons resultéssin inútils pels pletodòntids. Actualment les salamandres apulmonades són la família d’urodels més nombrosa, i representen més de la meitat de la biomassa animal en molts ecosistemes nord-americans. A més, són més actius que la majoria de lissamfibis, amb sistemes nerviosos i sensorials molt desenvolupats, sent depredadors voraços d’artròpodes i altres invertebrats.

3679651745_d678454a1b_oSalamandra zig-zag de Ozark (Plethodon angusticlavius) una curiosa salamandra apulmonada típica de l’estat de Missouri. Imatge de Marshal Hedin.

Com veieu la respiració cutània dels lissamfibis els permet fer coses que pocs tetràpodes poden fer. Passar tot un hivern submergits i viure a terra ferma sense pulmons són gestes increïbles reservades a un petit grup d’animals. Potser els lissamfibis encara depenen dels medi aquàtic per a sobreviure, però com hem vist, poca cosa tenen de lents i primitius, ja que presenten algunes de les adaptacions fisiològiques més impressionants del regne animal.

REFERÈNCIES

S’han utilitzat les següents fonts per a l’elaboració d’aquesta entrada:

Difusió-català

Regeneració d’extremitats, de l’axolot a l’ésser humà

La regeneració de parts del cos perdudes o danyades en els animals es coneix des de fa bastants segles. El 1740 el naturalista Abraham Trembley va observar a un petit cnidari que podia regenerar el seu cap si li tallaven, per això el va anomenar Hydra, fent referència al monstre de la mitologia grega que podia regenerar els seus múltiples caps si li tallaven. Posteriorment, es va descobrir que hi havíen moltes altres espècies animals amb capacitats regeneratives. En aquesta entrada parlarem sobre aquests animals.

Regeneració al regne animal

La regeneració de parts del cos està molt més extesa entre els diferents grups d’invertebrats que de vertebrats. Aquest procés pot ser bidireccional, en el que els dos troços de l’animal regeneren les parts que els falten per a generar dos animals (com a l’hidra, les planàries, els cucs i les estrelles de mar), o unidireccional, en la que l’animal perd una extremitat però només la regenera sense que es formin dos animals (artròpodes, moluscs i vertebrats). Entre els vertebrats, peixos i amfibis són els que presenten més capacitats regeneratives, tot i que molts llangardaixos i alguns mamífers poden regenerar la cua.

ch14f01Imatge de Matthew McClements sobre la regeneració bidireccional en planàries, hidres i estrelles de mar. Extret de Wolbert's Principles of Development.

La regeneració es pot donar de dues maneres diferents:

  • Regeneració sense proliferació cel·lular activa o “morphalaxis”. En aquest tipus, la part del cos que falta és recreada principalment mitjançant la remodelació de cèl·lules preexistens. Això és el que passa en la Hydra, en la que les parts perdudes es regeneren sense la creació de material nou. Per tant, si es secciona una hidra per la meitat, obtindrem dues versions més petites de la hidra original.
Vídeo d'un experiment on s'ha seccionat una Hydra en diferents trossos. Vídeo de Apnea.
  • Regeneració amb proliferació cel·lular o “epimorfosis”. En aquest, la part perduda es regenera mitjançant proliferació cel·luar o sigui, que es crea “de nou”. Aquesta en la majoria de casos es produeix mitjançant la formació d’una estructura especialitzada anomenada blastema, massa de cèl·lules mare sense diferenciar que apareix en fenòmens de regeneració cel·lular.

Quasi tots els grups d’animals amb capacitats regeneratives presenten regeneració amb formació de blastema. Tot i així, l’orígen de les cèl·lules mare del blastema varia segons el grup. Mentre que les planàries presenten cèl·lules mare pluripotents (que poden diferenciar-se a qualsevol tipus cel·lular) repartides per tot el cos, els vertebrats presenten cèl·lules dels teixits on es forma el blastema.

Entre els vertebrats terrestres, les sargantanes i els urodels són els que mostren més habilitats regeneratives. A continuació veurem com ho aconsegueixen i les aplicacions que això té a la medicina actual.

Cues prescindibles

Quan ets un petit animal que està sent perseguit per un gat o un altre depredador, probablement et surti més rentable perdre la teva preciada cua a perdre la vida. Alguns vertebrats terrestres han evolucionat seguint aquesta filosofia, i ells mateixos poden desprendre’s de la seva cua voluntàriament mitjançant un procés anomenat autotomia caudal. Això els permet fugir dels seus depredadors, els quals s’entretenen amb la cua perduda que segueix movent-se.

 Vídeo on es veu com algunes sargantanes com aquest vanzosaure de cua vermella (Vanzosaura rubricauda) tenen cues de colors vius per atraure l'atenció dels depredadors. Vídeo de Jonnytropics.

L’autotomia o autoamputació, es defineix com un comportament en el que l’animal es desprèn d’una o vàries parts del cos. L’autotomia caudal la trobem en moltes espècies de rèptils i en dues espècies de ratolins espinosos del gènere Acomys. Entre els rèptils, trobem autotomia caudal en els lacèrtids, els dragons, els escíncids i les tuatares.

Acomys.cahirinus.cahirinus.6872Foto d'un ratolí espinós del Caire (Acomys cahirinus), un mamífer que és capaç de desprendre's de la seva cua i regenerar-la. Foto de Olaf Leillinger.

En els rèptils, la fractura de la cua es dóna en zones concretes de les vèrtebres caudals que estàn debilitades de per sí. L’autotomia es pot donar de dues formes diferents: l’autotomia intravertebral, en la que les vèrtebres del centre de la cua tenen plans de fractura transversals preparats per trencar-se si es presionen suficient, i l’autotomia intervertebral, en la qual la cua es trenca entre les vèrtebres per constricció muscular.

0001-3765-aabc-201520130298-gf03Model tridimensional de els plans de fractura de la cua d'un llangardaix i la regeneració post-autotomia d'un tub cartilaginós. Imatge extreta de Joana D. C. G. de Amorim et al.

L’autotomia caudal permet fugir a l’animal, però li sortirà car. Molts rèptils utilitzen la cua com a reservori de greixos i perdre aquest magatzem d’energia sol ser perjudicial per l’animal. Per això es sap que molts llangardaixos, un cop ha desaparegut l’amenaça, buscan la seva cua perduda i se la mengen, per almenys recuperar l’energia que teníen acumulada en forma de greix. A més, regenerar una cua nova és un procés costós energèticament.

DSCN9467Foto d'una sargantana iberoprovençal (Podarcis liolepis) que ha perdut la cua. Foto de David López Bosch.

La regeneració de la cua dels rèptiles difereix de la d’amfibis i peixos en que no es forma el blastema, i que en lloc de regenerar-se realment les vèrtebres caudals, es forma un tub de cartílag. La nova cua no és tan mòbil i sol ser més curta que l’original, i sol regenerar-se completament al cap d’unes setmanes. La majoria de llangardaixos poden regenerar la cua vàries vegades, però alguns com el vidriol (Anguis fragilis) només poden fer-ho un cop. En ocasions, la cua original no es trenca del tot però s’activen els mecanismes de regeneració, cosa que pot fer que ens poguem trobar alguna sargantana o algún dragó amb més d’una cua.

056 (2)Detall de la cua d'un dragó comú (Tarentola mauritanica) que ha regenerat la cua sense acabar de perdre la cua original. Foto de Rafael Rodríguez.

Urodels, els reis de la regeneració

De tots els tetràpodes, els amfibis són els que presenten les majors capacitats regeneratives. Durant la fase larvària de la majoria d’espècies, tant la cua com les extremitats (si les presenten) poden ser regenerades si les perden. La comunitat científica creu que això es deu a que en els amfibis el desenvolupament de les extremitats i altres òrgans es retrassen fins al moment de la metamorfosi. Tot i així, les granotes i els gripaus (anurs) només conserven els seus poders regeneratius durant la fase de capgròs, perdent-los al arribar a l’edat adulta.

Wood_frog_tadpoleCapgròs de granota de bosc (Rana sylvatica) que, com en tots els amfibis, posposa el desenvolupament de les extremitats fins al moment de la metamorfosi. Foto de Brian Gratwicke.

En canvi, moltes salamandres i tritons (urodels) conserven els seus poders regeneratius durant tota la vida. Encara que moltes espècies presenten autotomia caudal, a diferència de les sargantanes, els urodels regeneren completament, no només la cua, sinó pràcticament qualsevol teixit corporal perdut. De totes les espècies conegudes, l’axolot (Ambystoma mexicanum), un amfibi neotènic que arriba a l’edat adulta sense patir cap metamorfosi, ha servit com a organisme model per a l’estudi de la formació del blastema que precedeix a la regeneració.

 Vídeo on es parla del axolot, aquest curiós amfibi que està en greu perill d'extinció. Vídeo de Zoomin.TV Animals.

La regeneració que es dóna en les salamandres té fases genèticament similars a les que pateixen la resta de vertebrats al desenvolupar els diferents teixits i òrgans durant el desenvolupament embrionari. En l’axolot (i en la resta d’urodels) la regeneració després de l’amputació d’una extremitat passa per tres fases diferents:

  • Curació de la ferida: Durant la primera hora després de l’amputació, cèl·lules epidèrmiques migren a la zona de la ferida. El tancament de la ferida es produeix més o menys a les dues hores i hi intervenen els mateixos mecanismes que en la resta de vertebrats. Tot i així, la regeneració completa de la pell es retrassa fins al final de la regeneració.
  • Desdiferenciació: Aquesta segona fase comença a les 24 hores de l’amputació i és quan es forma el blastema. Aquest està format per cèl·lules dels teixits especialitzats de la zona d’amputació que perden les seves característiques (obtenen la capacitat de proliferar i diferenciar-se de nou), i de cèl·lules derivades del teixit connectiu que migren a la zona d’amputació. Quan aquestes cèl·lules de diferent origen s’acumulen i formen el blastema, s’inicia la proliferació cel·lular.
  • Remodelació: Per a l’inici de la tercera fase, és imprescindible la formació d’un blastema amb cèl·lules de diversos orígens. Un cop format el blastema de cèl·lules desdiferenciades, la formació de la nova extremitat segueix el mateix patró que en les extremitats de qualsevol vertebrat durant el desenvolupament embrionari (fins i tot hi intervenen els mateixos gens).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Esquema de la formació del blastema en el peix zebra (Danio rerio) un altre organisme model. Imatge de Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recentment s’han trobat fòssils de diversos grups de tetràpodes primitius que presenten rastres de regeneració. S’han trobat proves de regeneració d’extremitats en fòssils de temnospòndils (Apateon, Micromelerpeton i Sclerocephalus) i de lepospòndils (Microbrachis i Hyloplesion). Aquesta àmplia gamma de gèneres de tetràpodes basals que presenten regeneració i el fet de que molts peixos també la presentin, ha portat a molts científics a plantejar-se si els primers grups de tetràpodes primitius presentaven regeneració i aquesta es va perdre en els avantpassats dels amniotes (rèptils, aus i mamífers).

Axolotl_ganz
Foto d'un axolot, per LoKiLeCh.

Tot i així, es creu que la informació genètica de formació del blastema podria trobar-se en l’ADN dels amniotes tot i que estaria en estat latent. De les tres fases del procés de regeneració, l’única que és exclusiva dels urodels és la fase de desdiferenciació, ja que la fase de curació és igual a la cicatrització en la resta de vertebrats i la de remodelació és igual a la formació de extremitats durant l’embriogènesi. Actualment s’estan portant a terme multitud d’estudis sobre com reactivar els gens latents que promouen la formació del blastema en altres vertebrats, com per exemple els éssers humans.

Alguns òrgans humans com el ronyó i el fetge ja tenen certa capacitat de regeneració, però gràcies a l’investigació amb cèl·lules mare en animals com les salamandres i les sargantanes, actualment és possible regenerar dits, genitals i parts de la bufeta, el cor i els pulmons. Com hem vist, els diferents animals capaços de regenerar membres seccionats amaguen el secret que podria salvar a milers de persones. Recordem això la pròxima vegada que escoltem que centenars d’espècies d’amfibis i rèptiles es troben en perill per culpa de la mà de l’home.

Difusió-català

Referències

Per a l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Regeneración de extremidades, del ajolote al ser humano

La regeneración de partes del cuerpo perdidas o dañadas en los animales es conocida desde hace varios siglos. En 1740 el naturalista Abraham Trembley observó a un pequeño cnidario que podía regenerar su cabeza si se la cortaban, por lo que lo llamó Hydra, en referencia al monstruo de la mitología griega que podía regenerar sus múltiples cabezas si se las cortaban. Posteriormente, se descubrió que había muchas otras especies animales con capacidades regenerativas. En esta entrada hablaremos sobre estos animales.

Regeneración en el reino animal

La regeneración de partes del cuerpo está mucho más extendida entre los diferentes grupos de invertebrados que de vertebrados. Este proceso puede ser bidireccional, en el que ambos trozos del animal regeneran las partes que les faltan para generar dos animales (cómo en la hidra, las planarias, los gusanos y las estrellas de mar), o unidireccional, en el que el animal pierde una extremidad pero solo la regenera sin que se formen dos animales (artrópodos, moluscos y vertebrados). Entre los vertebrados, peces y anfibios son los que presentan mayores capacidades regenerativas, aunque muchos lagartos y algunos mamíferos pueden regenerar sus colas.

ch14f01Imagen de Matthew McClements sobre la regeneración bidireccional en planàrias, hidras y estrellas de mar. Extraído de Wolbert's Principles of Development.

La regeneración se puede dar de dos maneras distintas:

  • Regeneración sin proliferación celular activa o “morphalaxis”. En este modo, la parte del cuerpo ausente es recreada principalmente mediante la remodelación de células preexistentes. Esto es lo que ocurre en la Hydra, en la que las partes perdidas se regeneran sin la creación de material nuevo. Por lo tanto, si se secciona una hidra por la mitad, obtendremos dos versiones más pequeñas de la hidra original.
Vídeo de un experimento en el que se ha seccionado una Hydra en diferentes trozos. Vídeo de Apnea.
  • Regeneración con proliferación celular o “epimorfosis”. En éste, la parte perdida se regenera mediante proliferación celular o sea, que se crea “de nuevo”. Ésta en la mayoría de casos se produce mediante la formación de una estructura especializada llamada blastema, masa de células madre sin diferenciar que aparece en fenómenos de regeneración celular.

Casi todos los grupos de animales con capacidades regenerativas presentan regeneración con formación de blastema. Aun así, el origen de las células madre del blastema varía según el grupo. Mientras que las planarias presentan células madre pluripotentes (que pueden diferenciarse a cualquier tipo celular) repartidas por todo el cuerpo, los vertebrados presentan células específicas en cada tipo de tejido (cartílago, músculo, piel…) que sólo generaran células de los tejidos donde se encuentre el blastema.

Entre los vertebrados terrestres, las lagartijas y los urodelos son los que muestran mayores habilidades regenerativas. A continuación veremos cómo lo consiguen y las aplicaciones que esto tiene en la medicina actual.

Colas prescindibles

Cuando eres un pequeño animal que está siendo perseguido por un gato u otro depredador, probablemente te salga más rentable perder tu preciada cola a perder tu vida. Algunos vertebrados terrestres han evolucionado siguiendo esta filosofía, y ellos mismos pueden desprenderse de su cola voluntariamente mediante un proceso llamado autotomía caudal. Esto les permite huir de sus depredadores, los cuáles se entretienen con la cola perdida que sigue moviéndose.

 Vídeo en el que se vé cómo algunas lagartijas como este vanzosaurio de cola roja (Vanzosaura rubricauda) tienen colas de colores brillantes para atraer la antención de los depredadores. Vídeo de Jonnytropics.

La autotomía o autoamputación, se define como un comportamiento en el que el animal se desprende de una o varias partes del cuerpo. La autotomía caudal la encontramos en muchas especies de reptiles y en dos especies de ratones espinosos del género Acomys. Entre los reptiles, encontramos autotomía caudal en los lacértidos, los geckos, los escincos o eslizones y en los tuataras.

Acomys.cahirinus.cahirinus.6872Foto de un ratón espinoso del Cairo (Acomys cahirinus), un mamífero que es capaz de desprenderse de su cola y regenerarla. Foto de Olaf Leillinger.

En los reptiles, la fractura de la cola se da en zonas concretas de las vértebras caudales que de por sí están debilitadas. La autotomía se puede dar de dos formas distintas: la autotomía intravertebral, en la que las vértebras del centro de la cola tienen planos de fractura transversales preparados para romperse si se les aplica suficiente presión, y la autotomía intervertebral, en la cual la cola se rompe entre las vértebras por constricción muscular.

0001-3765-aabc-201520130298-gf03Modelo tridimensional de los planos de fractura de la cola de un lagarto y la regeneración post-autotomía de un tubo cartilaginoso. Imagen extraída de Joana D. C. G. de Amorim et al.

La autotomía caudal permite huir al animal, pero le saldrá caro. Muchos reptiles utilizan la cola como reservorio de grasas y perder este almacén de energía suele ser perjudicial para el animal. Por eso se sabe que muchos lagartos, una vez ha desaparecido la amenaza, buscan su cola perdida y se la comen, para al menos recuperar la energía que tenían acumulada en forma de grasa. Además, regenerar una nueva cola es un proceso costoso energéticamente.

DSCN9467Foto de una lagartija parda (Podarcis liolepis) que ha perdido la cola. Foto de David López Bosch.

La regeneración de la cola en los reptiles difiere de la de anfibios y peces en que no se forma el blastema, y en que en vez de regenerarse realmente las vértebras caudales, se forma un tubo de cartílago. La nueva cola no es tan móvil y suele ser más corta que la original, y suele regenerarse completamente al cabo de unas semanas. La mayoría de lagartos pueden regenerar la cola varias veces, pero algunos cómo el lución (Anguis fragilis) sólo pueden hacerlo una vez. En ocasiones, la cola original no se rompe del todo pero se activan los mecanismos de regeneración, cosa que puede dar a que nos podamos encontrar a lagartijas y salamanquesas con más de una cola.

056 (2)Detalle de la cola de una salamanquesa común (Tarentola mauritanica) que ha regenerado la cola sin acabar de perder la cola original. Foto de Rafael Rodríguez.

Urodelos, los reyes de la regeneración

De todos los tetrápodos, los anfibios son los que presentan las mayores capacidades regenerativas. Durante la fase larvaria de la mayoría de especies, tanto la cola como las extremidades (si las presentan) pueden ser regeneradas tras su pérdida. La comunidad científica cree que esto se debe a que en los anfibios el desarrollo de las extremidades y otros órganos se retrasan hasta el momento de la metamorfosis. Aun así, ranas y sapos (anuros) sólo conservan sus poderes regenerativos durante su fase de renacuajo, perdiéndolos al llegar a la edad adulta.

Wood_frog_tadpoleRenacuajo de rana de bosque (Rana sylvatica) que, cómo en todos los anfibios, pospone el desarrollo de las extremidades hasta el momento de la metamorfosis. Foto de Brian Gratwicke.

En cambio, muchas salamandras y tritones (urodelos) conservan sus poderes regenerativos durante toda su vida. Aunque muchas especies presentan autotomía caudal, a diferencia de las lagartijas, los urodelos regeneran completamente, no sólo la cola, sino prácticamente cualquier tejido corporal perdido. De todas las especies conocidas, el ajolote (Ambystoma mexicanum), un anfibio neoténico que llega a la edad adulta sin sufrir metamorfosis, ha servido como organismo modelo para el estudio de la formación del blastema que precede a la regeneración.

 Vídeo en el que se habla del ajolote, este curiosos anfibio que se encuentra en grave peligro de extinción. Vídeo de Zoomin.TV Animals.

La regeneración que se da en las salamandras tiene fases genéticamente similares a las que sufren el resto de vertebrados al desarrollar los distintos tejidos y órganos durante el desarrollo embrionario. En el ajolote (y en el resto de urodelos) la regeneración después de la amputación de una extremidad pasa por tres fases distintas:

  • Curación de la herida: Durante la primera hora tras la amputación, células epidérmicas migran a la zona de la herida. El cierre de la herida se produce más o menos a las dos horas e intervienen los mismos mecanismos que en el resto de vertebrados. Aun así, la regeneración completa de la piel se retrasa hasta el final de la regeneración.
  • Desdiferenciación: Esta segunda fase comienza a las 24 horas de la amputación y es cuando se forma el blastema. Éste está compuesto por células de los tejidos especializados de la zona de amputación que pierden sus características (obtienen la capacidad de proliferar y diferenciarse de nuevo), y de células derivadas del tejido conectivo que migran a la zona de amputación. Cuando estas células de diferente origen se acumulan y forman el blastema, se inicia la proliferación celular.
  • Remodelación: Para el inicio de la tercera fase, es imprescindible la formación de un blastema con células de diversos orígenes. Una vez formado el blastema de células desdiferenciadas, la formación de la nueva extremidad sigue el mismo patrón que el de las extremidades de cualquier vertebrado durante el desarrollo embrionario (incluso intervienen los mismos genes).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Esquema de la formación del blastema en el pez zebra (Danio rerio) otro organismo modelo. Imagen de Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recientemente se han encontrado fósiles de diversos grupos de tetrápodos primitivos que presentan rastros de regeneración. Se han encontrado pruebas de regeneración de extremidades en fósiles de temnospóndilos (Apateon, Micromelerpeton y Sclerocephalus) y de lepospóndilos (Microbrachis y Hyloplesion). Esta amplia gama de géneros de tetrápodos basales que presentan regeneración y el hecho de que muchos peces también la presenten, ha llevado a muchos científicos a plantearse si los diferentes grupos de tetrápodos primitivos presentaban capacidad de regeneración y ésta se perdió en los antepasados de los amniotas (reptiles, aves y mamíferos).

Axolotl_ganz
Foto de un ajolote, por LoKiLeCh.

Aun así, se cree que la información genética de formación del blastema podría encontrarse en el ADN de los amniotas aunque estaría en estado latente. De las tres fases del proceso de regeneración, la única que es exclusiva de los urodelos es la fase de desdiferenciación, ya que la fase de curación es igual a la cicatrización en el resto de vertebrados y la de remodelación es igual a la formación de extremidades durante la embriogénesis. Actualmente se están llevando a cabo multitud de estudios sobre cómo reactivar los genes latentes que promueven la formación del blastema en otros vertebrados, como por ejemplo los seres humanos.

Algunos órganos humanos como el riñón y el hígado ya tienen cierta capacidad de regeneración, pero gracias a la investigación con células madre en animales como las salamandras y las lagartijas, actualmente es posible regenerar dedos, genitales y partes de la vejiga, el corazón y los pulmones. Como hemos visto, los diferentes animales capaces de regenerar miembros seccionados encierran el secreto que podría salvar a miles de personas. Recordemos esto la próxima vez que oigamos que cientos de especies de anfibios y reptiles se encuentran en peligro por culpa de la mano del hombre.

Difusió-castellà

Referencias

Para la elaboración de esta entrada se han utilizado las siguientes fuentes: