Arxiu d'etiquetes: Homo habilis

Cooking also made us human

Cooking is a distinctive and unique feature of our species. After the success of Eating meat made us human, we continue delving into the nutrition of our ancestors as one of many factors that led us to Homo sapiens. We will analyze the contributions of our readers in the previous post on the importance of carbohydrates and the use of fire.

THE OPPORTUNIST OMNIVOROUS

In the previous post we learned that one factor that contributed to the fast growth of the brain was the increased intake of meat by H. habilis, that allowed them to save energy in digestion (Aiello, L. Wheeler, P, 1995). Another factor that allowed saving energy to dedicate to brain growth, since Lucywas bipedalism (Adrienne L. Zihlman and Debra R. Bolter, 2015).

One of the things that gave us evolutionary success is our ability to take advantage of almost any food, allowing our expansion around the globe. Current diets are varied and traditionally linked to the availability of the geographical area or time of year, which changed with the development of agriculture and livestock. Human groups studied in historical period without agriculture or livestock, hunt, fish and gather very different foods, but no groups exclusively carnivorous or exclusively vegetarian have been found (except Eskimos, who have traditionally fed on hunting and fishing because of the characteristics of their environment, frozen during almost all the year).

Hazdas going hunting The hazdas are a small African tribe of hunter-gatherers 1500 Photo:.. Andreas Lederer
Hazda people returning from hunting. The Hadza are a small African tribe of about 1500 hunter-gatherers. Photo: Andreas Lederer

The first tools, possibly used by Australopithecus but obvious since H. habilis, allowed our ancestors to get food that otherwise would have been impossible to get: drilling and tearing flesh, breaking the hard shells of nuts, and later crushing and grinding grain. Thus, the basis of our current supplies are hard cereal grains (e.g. rice, wheat) and the dried seeds of legumes (e.g. lentils), because our needing of protein intake is low, although meat is consumed in excess in the First World countries.

But before the advent of agriculture, our ancestors ate what they found: Neanderthals in hostile areas had to base the diet with meat and supplement it with vegetables when they were available, while in milder climate zones, like the Mediterranean , make use of aquatic resources as molluscs, turtles and fish. Furthermore, by its robust body and increased muscle they needed more protein intake.

Neanderthals collecting mussels in Gibraltar, one of the last settlements of this species. Photo: DK Discover

THE ORIGINS OF THE CUISINE

As we have seen, seeds are very nutritious because they are rich in carbohydrates (especially starch), but low in protein; in addition, legumes must be cooked to be assimilated. No other animal, except us and our ancestors, prepare food or cooks. Cooking is an unique human trait which opened an infinite number of possibilities in our nutrition.

CONTROL OF FIRE

The first traces of use of fire date back 1.6 million years ago in Africa, although the first reliable evidence is a hearth 0.79 million years old. The responsible: Homo erectus, but those who used fire continuously, especially for cooking, were a later species: Neanderthals.

 Homo erectus, AMNH, American Museun natural history, querol mireia, mireia querol rovira
Homo erectus, American Museum of Natural History. Photo: Mireia Querol Rovira

The advantages of controlling fire were numerous and very important, but in this post we will delve into the first one:

  • Cooking and food storage
  • Better hunting and scavenging: fire allowed them to obtain prey hunted by large carnivores or direct theirs to natural traps .
  • Protection from predators
  • Heat: increased survival when temperatures fell.
  • Light: they could extend its tasks when night had fallen, favouring social skills and later, the development of language. In addition, changing the circadian rhythm (24h internal clock) could have extended the reproductive period .
  • Access to new territories: burning areas of dense vegetation to take dead animals and make use of new areas and encouraging migration to cooler places.
  • Improved tools: wood tools made with fire are more durable.
  • Better hygiene: burning waste avoided infections.
  • Medicine: after H. erectus, the fire has been used as disinfectant and instrument sterilizer and for the preparation of remedies based on medicinal plants, as inhalation of vapors or preparing of  infusions.
    Homo erectus, Daynes, CosmoCaixa, mireia querol mireia querol rovira
    Homo erectus surprised by the strength of his spear warmed with fire. Figure by Elisabeth Daynès, CosmoCaixa. Photo: Mireia Querol Rovira

    ADVANTAGES OF COOKING FOOD

    • Variety in the diet: certain foodstuff is indigestible raw or difficult to chew (especially for individuals with dental problems). Stewed food is softer and easier to digest, allowing H. erectus expand their diet respect their ancestors, accessing food of higher nutritional value (Richard Wrangham, 2009). Cooking improves the palatability and increases the assimilable carbohydrate availability in tubers, vegetables… and therefore it gives them more energy value. According to Wrangham and other experts, raw foodism can be harmful to health, because our body is adapted to this “pre-digestion” in the stoves, which allows us to be the primate with the shorter digestive system in relation to the body.
    • Reduction of the teeth: tusks and teeth could have been reduced due to consumption of cooked food. A tooth that has to bite a boiled potato instead of a raw one can be 82% smaller. Less space were needed for chewing muscles and teeth in the skull, so the mouth and face became smaller. This free space can be dedicated to accommodate an increasingly large brain. H. erectus had a brain 42% larger than H. habilis.
    • Less energy consumption: energy and time dedicated to chew and digest cooked food is less, so the number of final calories obtained increases. This energy can be devoted to brain development rather than digesting food.

      comida neandertal, dieta neandertal, neanderthal, dietPossible Neanderthal diet. Photo: Kent Lacin LLC/The Food Passionates/Corbis.
    • Fewer diseases: raw food, especially meat, may contain potentially pathogenic or deadly bacteria and parasites. But from certain temperatures, many of these bacteria die, so eating cooked rather than raw, our ancestors increased their survival significantly.
    • Less poisoning: some plants, fungi and tubers are toxic if are consumed raw, like some edible mushrooms, sweet potato or potatoes with green areas.
    • Food preservation: by smoking meat, it could be kept in good condition for longer and take advantage of it in times of scarcity. In addition, cooked food lasts longer than raw food.

CONCLUSION

In short, cooking was another factor involved in the brain development and cognitive abilities of our ancestors, allowed energy savings to digest and chew food, decreased masticatory apparatus, allowed the young become earlier independent from their breast-feeding mothers (who could mate more often), improved immune system… Even improved social skills: left more free time so they could dedicate it to other tasks, such as cooperation to keep the fire, planning the collection or capture of food, distribution of food in the group acoording to range and health of individuals… intelligence enhanced cooking techniques, which in turn enhanced the intelligence, in an infinite wheel that still exists today.

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

Cuinar també ens va fer humans

Cuinar és un tret distintiu i únic de la nostra espècie. Després de l’èxit de l’article Menjar carn ens va fer humans, continuem aprofundint en la nutrició dels nostres avantpassats com un dels múltiples factors que ens ha portat fins Homo sapiens. Analitzarem les aportacions dels nostres lectors en l’article anterior sobre la importància dels carbohidrats i l’ús del foc.

L’OMNÍVOR OPORTUNISTA

En l’article anterior vam veure que un dels factors que va contribuir al ràpid creixement del cervell va ser l’augment de la ingesta de carn per part d’H. habilis, que li va permetre estalviar energia en la digestió (Aiello, L. i Wheeler, P, 1995). Un altre factor que va permetre estalviar energia per dedicar-la al creixement del cervell, ja des Lucy, va ser el bipedisme (Adrienne L. Zihlman i Debra R. Bolter, 2015).

Una de les coses que ens ha donat èxit evolutiu és la nostra capacitat d’aprofitar gairebé qualsevol aliment, permetent la nostra expansió per tot el planeta. Les dietes actuals són molt variades i tradicionalment lligades a la disponibilitat de la zona geogràfica o època de l’any, cosa que va canviar amb l’agricultura i ramaderia. Els grups humans estudiats en època històrica sense agricultura ni ramaderia, cacen, pesquen i recol·lecten aliments molt diversos, però no s’han trobat grups exclusivament carnívors o exclusivament vegetarians (exceptuant els esquimals, que tradicionalment s’han alimentat de caça i pesca degut a les característiques del seu medi, gelat gran part de l’any).

Hazdas volviendo de caza. Los hazdas son una pequeña tribu africana de 1.500 cazadores-recolectores. Foto: Andreas Lederer
Hazdes tornant de caça. Els hazda són una petita tribu africana de 1.500 caçadors-recolectors. Foto: Andreas Lederer

Les primeres eines, ja utilitzades possiblement per australopitecs però evidents a partir d’H. habilis, van permetre als nostres avantpassats obtenir aliments que d’altra manera hagués estat impossible aconseguir: perforar i esquinçar carn, trencar les dures closques dels fruits secs, i més endavant triturar i moldre el gra. Així, la base de la nostra alimentació actual són les llavors dures dels cereals (per exemple, arròs, blat…) i les llavors seques de les lleguminoses (llegums, per exemple, llenties), ja que l’aportació proteica que necessitem és baixa, encara que la carn sigui consumida en excés  als països del Primer Món.

Però abans de l’aparició de l’agricultura i ramaderia, els nostres avantpassats s’alimentaven del que trobaven: neandertals en zones més hostils havien de basar la dieta en la carn i complementar-la amb vegetals quan estiguessin disponibles, mentre que en zones de clima més suau, com el mediterrani, explotaven recursos aquàtics com mol·luscs, tortugues i peixos. A més, pel seu cos robust i major musculatura necessitaven major aportació proteica.

Neandertales recogiendo mejillones en Gibraltar, uno de los últimos asentamientos de esta especie. Foto: DK Discover
Neandertals collint musclos a Gibraltar, un dels últims assentaments d’aquesta espècie. Foto: DK Discover

ELS ORÍGENS DE LA CUINA

Com hem vist, les llavors són molt nutritives ja que són riques en hidrats de carboni (sobretot midó), però pobres en proteïnes; a més, els llegums han de ser cuinats per ser assimilables. Cap animal, a excepció de nosaltres i els nostres avantpassats, prepara ni cuina els aliments. La cuina és un tret exclusivament humà que va obrir un infinit nombre de possibilitats en la nostra alimentació.

EL DOMINI DEL FOC

Els primers indicis de l’ús del foc es remunten fa 1,6 milions d’anys a l’Àfrica, encara que la primera evidència segura és una llar de fa 0,79 milions d’anys. El responsable: Homo erectus, encara que els que van utilitzar el foc de manera continuada, sobretot per cuinar, van ser una espècie posterior: els neandertals.

Homo erectus, AMNH, American Museun natural history, mireia querol, mireia querol rovira
Reproducció d’Homo erectus. American Museum of Natural History. Foto: Mireia Querol

Els avantatges que va suposar el control del foc van ser nombrosos i molt importants, però en aquest article aprofundirem en el primer:

  • Cocció i conservació dels aliments
  • Millor caça: el foc els permetia cobrar preses caçades per grans carnívors o dirigir les seves cap a trampes naturals.
  • Protecció contra depredadors
  • Calor: augment de la supervivència quan baixaven les temperatures.
  • Llum: podien allargar les seves tasques quan ja havia caigut la nit, afavorint llaços socials i posteriorment, el desenvolupament del llenguatge. A més, el canviar el cicle circadià (rellotge intern dia-nit) podria haver ampliat el període reproductiu.
  • Accés a nous territoris: cremant zones de vegetació densa per aprofitar animals morts i trobar noves zones per explotar i afavorint les migracions a llocs més freds.
  • Millora de les eines: treballant al foc eines de fusta, s’augmenta la seva resistència.
  • Higiene de la llar: cremant les deixalles s’evitaven infeccions.
  • Medicina: posteriorment a H. erectus, el foc s’ha utilitzat com esterilitzador de ferides i instruments i per a la preparació de remeis a base de plantes medicinals, com la inhalació de vapors i preparació de beuratges i infusions.
Homo erectus, Daynes, CosmoCaixa, mireia querol mireia querol rovira
Homo erectus sorprès per la resistència de la seva llança treballada al foc. Reproducció d’Elisabeth Daynès, CosmoCaixa. Foto de Mireia Querol

AVANTATGES DE CUINAR ELS ALIMENTS

  • Varietat en la dieta: certs aliments són indigeribles crus o de difícil masticació (sobretot per a individus amb problemes dentals). Cuits són més tous i de més fàcil digestió, el que va permetre a H. erectus ampliar la seva dieta respecte els seus avantpassats, accedint a menjar de més valor nutritiu (Richard Wrangham, 2009). El fet de cuinar, millora el sabor i augmenta la disponibilitat assimilable dels carbohidrats en tubercles, vegetals… i per tant, els dota de més valor energètic. Segons Wrangham i altres experts, el crudivorisme pot ser perjudicial per a la salut, ja que el nostre cos està adaptat a aquesta “pre-digestió” als fogons, que ens permet ser el primat amb el sistema digestiu més curt en relació al cos.
  • Reducció de les dents: els ullals i queixals es podrien haver reduït a causa del consum d’aliments cuinats. Una dent que hagi de mossegar una patata bullida en lloc d’una crua pot ser un 82% més petita. Tampoc es necessitava tant espai per la musculatura de masticació al crani, per la qual cosa es va reduir la boca i la cara. Aquest espai sobrant pot dedicar-se a allotjar un cervell cada vegada més gran. H. erectus presentava un cervell un 42% més gran que H. habilis.
  • Menor consum energètic: l’energia i temps dedicats a mastegar i digerir aliments cuinats és menor, de manera que s’incrementa el nombre de calories finals obtingudes. Aquesta energia de més, pot dedicar-se al desenvolupament del cervell en lloc de a l’alimentació.
comida neandertal, dieta neandertal, neanderthal, diet
Possible dieta neandertal. Foto de Kent Lacin LLC/The Food Passionates/Corbis
  • Menys malalties: els aliments crus, especialment la carn, poden contenir bacteris o paràsits potencialment patògens i eventualment mortals. Però a partir de certes temperatures, molts d’aquests bacteris moren, per la qual cosa menjant cuinat en lloc de cru, els nostres avantpassats van augmentar la seva supervivència de manera significativa.
  • Menys intoxicacions: algunes plantes, fongs i tubercles són tòxiques si es consumeixen crus, com per exemple, alguns bolets comestibles, el moniato o les patates amb zones verdes.
  • Conservació dels aliments: mitjançant el fumat, la carn podia conservar-se en bones condicions durant més temps i aprofitar-la en èpoques d’escassetat. A més, els aliments cuinats duren més dies en bon estat que els crus.

CONCLUSIÓ

En resum, cuinar va ser un altre factor que va participar en l’augment del cervell i les capacitats cognitives dels nostres avantpassats: va permetre un estalvi d’energia a l’hora de digerir i mastegar els aliments, va disminuir l’aparell masticatori, va permetre a les cries independitzar-se abans de l’alletament de les mares (que es podien reproduir amb més freqüència), va millorar el sistema immunitari… Fins i tot va millorar les habilitats socials: va deixar més hores lliures perquè es poguessin dedicar a altres tasques, com la cooperació per mantenir el foc, planificar la recollida o captura de l’aliment, distribuir-lo dins del grup segons el rang o estat de salut… la intel·ligència va potenciar les tècniques de cuina, que al seu torn van potenciar la intel·ligència, en una roda sense fi que perdura encara fins els nostres dies.

REFERÈNCIES

mireia querol rovira

Cocinar también nos hizo humanos

Cocinar es un rasgo distintivo y único de nuestra especie. Después del éxito del artículo Comer carne nos hizo humanos, continuamos profundizando en la nutrición de nuestros antepasados como uno de los múltiples factores que nos ha llevado hasta Homo sapiens. Analizaremos las aportaciones de nuestros lectores en el artículo anterior sobre la importancia de los carbohidratos y el uso del fuego.

EL OMNÍVORO OPORTUNISTA

En el artículo anterior vimos que uno de los factores que contribuyó al rápido crecimiento del cerebro fue el aumento de la ingesta de carne por parte de H. habilis, que le permitió ahorrar energía en la digestión (Aiello, L. y Wheeler, P, 1995). Otro factor que permitió ahorrar energía para dedicarla al crecimiento del cerebro, ya desde Lucy, fue el bipedismo  (Adrienne L. Zihlman y Debra R. Bolter, 2015).

Una de las cosas que nos ha dado éxito evolutivo es nuestra capacidad de aprovechar casi cualquier alimento, permitiendo nuestra expansión por todo el planeta. Las dietas actuales son muy variadas y tradicionalmente ligadas a la disponibilidad de la zona geográfica o época del año, cosa que cambió con la agricultura y ganadería. Los grupos humanos estudiados en época histórica sin agricultura ni ganadería, cazan, pescan y recolectan alimentos muy diversos, pero no se han encontrado grupos exclusivamente carnívoros o exclusivamente vegetarianos (exceptuando a los esquimales, que tradicionalmente se han alimentado de caza y pesca debido a las características de su medio, helado gran parte del año).

Hazdas volviendo de caza. Los hazdas son una pequeña tribu africana de 1.500 cazadores-recolectores. Foto: Andreas Lederer
Hazdas volviendo de caza. Los hazda son una pequeña tribu africana de 1.500 cazadores-recolectores. Foto: Andreas Lederer

Las primeras herramientas, ya usadas posiblemente por australopitecos pero evidentes a partir de H. habilis, permitieron a nuestros ancestros obtener alimentos que de otra manera hubiera sido imposible conseguir: perforar y desgarrar carne, romper las duras cáscaras de los frutos secos, y más adelante triturar y moler el grano. Así, la base de nuestra alimentación actual son las semillas duras de los cereales (por ejemplo, arroz, trigo) y las semillas secas de las leguminosas (legumbres, por ejemplo, lentejas), ya que el aporte proteínico que necesitamos es bajo, aunque la carne sea consumida en exceso en los países del Primer Mundo.

Pero antes de la aparición de la agricultura y ganadería, nuestros antepasados se alimentaban de lo que encontraban: neandertales en zonas más hostiles tenían que basar la dieta en la carne y complementarla con vegetales cuando estuvieran disponibles, mientras que en zonas de clima más suave, como el mediterráneo, explotaban recursos acuáticos como moluscos, tortugas y peces. Además, por su cuerpo robusto y mayor musculatura necesitaban mayor aporte proteínico.

Neandertales recogiendo mejillones en Gibraltar, uno de los últimos asentamientos de esta especie. Foto: DK Discover
Neandertales recogiendo mejillones en Gibraltar, uno de los últimos asentamientos de esta especie. Foto: DK Discover

LOS ORÍGENES DE LA COCINA

Como hemos visto, las semillas son muy nutritivas ya que son ricas en hidratos de carbono (sobretodo almidón), pero pobres en proteínas; además, las legumbres tiene que ser cocinadas para ser asimilables. Ningún animal, a excepción de nosotros y nuestros antepasados, prepara ni cocina los alimentos. La cocina es un rasgo exclusivamente humano que abrió un infinito número de posibilidades en nuestra alimentación.

EL DOMINIO DEL FUEGO

Los primeros indicios del uso del fuego se remontan hace 1,6 millones de años en África, aunque la primera evidencia segura es un hogar de hace 0,79 millones de años. El responsable: Homo erectus, aunque los que utilizaron el fuego de manera continuada, sobretodo para cocinar, fueron una especie posterior: los neandertales.

Homo erectus, AMNH, American Museun natural history, mireia querol, mireia querol rovira
Reproducción de Homo erectus. American Museum of Natural History. Foto: Mireia Querol

Las ventajas que supuso el control del fuego fueron numerosas y muy importantes, pero en este artículo profundizaremos en la primera:

  • Cocción y conservación de los alimentos
  • Mejor caza y carroñeo:  el fuego les permitía cobrarse presas cazadas por grandes carnívoros o dirigir las suyas hacia trampas naturales.
  • Protección frente a depredadores
  • Calor: aumento de la supervivencia cuando bajaban las temperaturas.
  • Luz: pudiendo alargar sus tareas cuando ya había caído la noche, favoreciendo lazos sociales y posteriormente, el desarrollo del lenguaje. Además, el cambiar el ciclo circadiano (reloj interno día-noche) podría haber extendido el período reproductivo.
  • Acceso a nuevos territorios: quemando zonas de vegetación densa para aprovechar animales muertos y nuevas zonas que explotar y favoreciendo las migraciones a lugares más fríos.
  • Mejora de las herramientas: templando al fuego herramientas de madera, se aumenta su resistencia.
  • Higiene del hogar: quemando los desperdicios se evitaban infecciones.
  • Medicina: posteriormente a H. erectus, el fuego se ha utilizado como esterilizador de heridas e instrumentos y para la preparación de remedios a base de plantas medicinales, como la inhalación de vapores y preparación de brebajes e infusiones.
Homo erectus, Daynes, CosmoCaixa, mireia querol mireia querol rovira
Homo erectus sorprendido por la resistencia de su lanza de madera templada al fuego. Reproducción de Elisabeth Daynès, CosmoCaixa. Foto de Mireia Querol

VENTAJAS DE COCINAR LOS ALIMENTOS

  • Variedad en la dieta: ciertos alimentos son indigeribles crudos o de difícil masticación (sobretodo para individuos con problemas dentales). Cocidos son más blandos y de más fácil digestión, lo que permitió a H. erectus ampliar su dieta respecto sus antepasados, accediendo a comida de mayor valor nutritivo (Richard Wrangham, 2009). El hecho de cocinar, mejora el sabor y aumenta la disponibilidad asimilable de los carbohidratos en tubérculos, vegetales… y por lo tanto, les dota de más valor energético. Según Wrangham y otros expertos, el crudivorismo puede ser perjudicial para la salud, ya que nuestro cuerpo está adaptado a esta “pre-digestión” en los fogones, que nos permite ser el primate con el sistema digestivo más corto en relación al cuerpo.
  • Reducción de los dientes: los colmillos y muelas pudieron haberse reducido debido al consumo de alimentos cocinados. Un diente que tenga que morder una patata hervida en lugar de una cruda puede ser un 82% más pequeño. Tampoco se necesitaba tanto espacio para musculatura de masticación en el cráneo, por lo que se redujo la boca y la cara. Este espacio sobrante puede dedicarse a alojar un cerebro cada vez más grande. H. erectus presentaba un cerebro un 42% más grande que H. habilis.
  • Menos consumo energético: la energía y tiempo dedicados a masticar y digerir alimentos cocinados es menor, por lo que se incrementa el número de calorías finales obtenidas. Esta energía de más, puede dedicarse al desarrollo del cerebro en lugar de a la alimentación.
comida neandertal, dieta neandertal, neanderthal, diet
Posible dieta neandertal. Foto de Kent Lacin LLC/The Food Passionates/Corbis
  • Menos enfermedades: los alimentos crudos, especialmente la carne, pueden contener bacterias o parásitos potencialmente patógenos y eventualmente mortales. Pero a partir de ciertas temperaturas, muchas de estas bacterias mueren, por lo que comiendo cocinado en lugar de crudo, nuestros antepasados aumentaron su supervivencia de manera significativa.
  • Menos intoxicaciones: algunas plantas, hongos y tubérculos son tóxicos si se consumen crudos, como por ejemplo, algunas setas comestibles, el boniato o las patatas con zonas verdes.
  • Conservación de los alimentos: mediante el ahumado, la carne podía conservarse en buenas condiciones durante más tiempo y aprovecharla en épocas de escasez. Además, los alimentos cocinados duran más días en buen estado que los crudos.

CONCLUSIÓN

En resumen, cocinar fue otro factor que participó en el aumento del cerebro y las capacidades cognitivas de nuestros antepasados: permitió un ahorro de energía a la hora de digerir y masticar los alimentos, disminuyó el aparato masticatorio, permitió a las crías independizarse antes del amamantamiento de las madres (que se podían reproducir con más frecuencia), mejoró el sistema inmunitario… Incluso mejoró las habilidades sociales: dejó más horas libres para que se pudieran dedicar a otras tareas, como la cooperación para mantener la lumbre, planificar la recogida o captura del alimento, distribuirlo en el grupo según el rango o estado de salud… la inteligencia potenció las técnicas de cocina, que a su vez potenciaron la inteligencia, en una rueda sin fin que perdura aún en nuestros días.

REFERENCIAS

Mireia Querol Rovira

Eating meat made us human

Currently some of the world’s population can choose their diet: omnivorous, vegetarian, vegan, raw foodism, carnivorous, paleodiet… but what ate our ancestors?  Which diet is more suited to the one of our ancestors? Without going into polemics, we will discuss one of the crucial facts of the evolution from Australopitechus to Homo: the meat intake.

WHAT DID OUR RELATIVES EAT ?

One of the reasons given to follow a strict vegetarian or vegan diet is that as “we are apes”, they feed on fruits and plants, and moreover, a more “natural” diet  is achieved. Currently and traditionally the base of the world diet are the seeds of cereals (rice, wheat, corn, etc.) and legumes (beans, lentils…), which often require processing (flour, for example) and have nothing to do with their wild ancestors. Since agriculture and livestock was invented and we have selected the best varieties for human consumption, the label “natural” loses all meaning. Although transgenic food is now on everyone’s lips, we have been using the genetic modification for thousands of years.

In the top row, wild ancestors of lettuce, carrot and corn. Below, domestic varieties. Source

That we are apes and the natural thing is to eat vegetables, is also not entirely true. As primates have evolved in trees, hominids have a strict diet or mainly folivorous -leaves- and frugivorous -fruit- (gorillas, orangutans), while gibbons also complete their diet with invertebrates. Our closest relatives however (bonobos, chimpanzees) are omnivorous as they eat vegetables, fruits, invertebrates and even small mammals and other primates (althought in less proportion than vegetables).

Chimpanzee eating meat. Populations of chimpanzees have been described  hunting with spears made by themselves. Photo Cristina M.Gomes, Max Planck Institute.

No wonder then that our direct distant ancestors as Australopithecus Lucy, ate leaves, fruits, roots and tubers as the basis of their diet. Some species, in addition to vegetables, also fed on invertebrates and small vertebrates, similar to modern chimpanzees.

HERBIVOROUS AND CARNIVOROUS

Fruits have more sugars, although they are not very abundant in comparison with leaves and stems. But leaves have less nutritional value because they contain many fibers we can not absorb, such as cellulose. Legumes contain more protein than grains, but some essential amino acids and vitamins (such as B12) are absent or in a few proportion in vegetables and easily assimilable iron (hemo iron) is found only in food with animal origin.

In short, vegetables are harder to digest compared to animals, so mammalian herbivores have longer digestive systems, or compartmented stomachs, chew over long periods of time and some are ruminants, while carnivores have digestive systems with lower absorption surface and require little chewing of food.

Digestive systems of non-ruminant herbivores, ruminants, insectivores and carnivores. Unknown author

 

WHY OUR ANCESTORS STARTED EATING MORE MEAT?

2.6 million years ago, climate change made our planet cooler and drier. In Africa the savanna dominated much of the territory, so hominids had to deal with hard leaves, leaves covered with wax, hard or thorny stems, roots… these difficult to digest resources were utilised by Paranthropus, with large teeth and powerful musculature in the jaw to crush, although they had a similar brain to Australopithecus. They became extinct a million years ago.

Paranthropus boisei. Reconstruction by John Gurche, photo by Chip Clark.

But another group of hominins found a kind of resources that offered them more energy in smaller quantities, and were easier to chew: meat. Homo habilis was the first to eat meat at higher rates than the rest of relatives and also meats with more fat. It was an opportunist: they ate almost anything edible, instead, Paranthropus were specialists, so if their food was scarce, they had more possibilities to die.

BIG BRAINS …

While Australopithecus and Paranthropus had a cranial capacity of 400-500 cm 3, Homo habilis had up to 700 cm 3. This increased brain size allowed them greater versatility and ability to improvise to find food.

One thing that clearly differentiates us from other primates and animals is the large size of our brain. As you have noticed, H. habilis and is classified within our genus,  Homo, due to that great leap of brain size, among other things.

Skull comparison between Australopithecus, Homo habilis and Paranthropus. Credit: Peter S. Ungar et al, 2011.

But a large brain also has drawbacks: 25% of our body’s energy is consumed by the brain at rest, H. habilis brain consumed 15% and Australopithecus only 10%. In addition to quantity, this energy also has to have quality: some fatty acids for proper brain function only are found in some nuts, but especially in animal fat, easier to achieve if vegetables were scarce.

homo habilis, cosmocaixa, daynes, museu de la ciencia de barcelona
Homo habilis reconstruction by Elisabeth Daynès, Cosmocaixa (Barcelona). Photo by Mireia Querol

…SMALL INTESTINES …

The only way to dedicate more energy to brain function is to reduce the size of other high energy consumer organs (Aiello, L. Wheeler, P, 1995). Heart, kidney, liver, they are major consumers of energy, but vital, so the solution is to reduce the gut and that’s only possible with the change of an almost exclusively vegetarian diet (Australopithecus) to another of easier assimilation with more protein and animal fat (H. habilis).

Comparison between high energy consumer organs between humans and other primates. Image by J. Rodriguez

…AND TOOLS

A large brain also gave another advantage to H. habilis. Despite his appereance (small, no large fangs or claws) they could make use of a great variety of meat (first as scavengers and later as hunters) due to the use of tools. Australopithecus probably used some sort of simple tools, mostly wooden made, but we know for sure that early manufacture of stone tools (archaeological industry) belong to H. habilis. This allowed them to take advantage of the inside of the bone marrow of large prey killed by carnivores when all the flesh had been eaten by other animals. Currently only hyenas and bearded vultures can access this resource without tools. Besides, by not requiring such large teeth and jaws, the skull can accommodate a larger brain.

habilis, carronyer, carroñero, habilis, herramientas ,eines
H. habilis scavenging a rhino. Source; DK FindOut

CONCLUSION

In short, the increase of the brain of Homo was possible by changing diet, which allowed a shorter digestive tract and smaller masticatory apparatus. In turn, to achieve these more energy foods more intelligence is required, resulting in more complex behaviors such as the use of manufactured tools (Oldowan lithic technology, Mode 1).

Our digestive system is the result of millions of years of evolution as opportunistic omnivores. Some current strict diets (vegetarian or almost carnivorous) are in contradiction with this biological heritage and the abuse and access to all kinds of food carry us all kinds of allergies and food problems. The secret remains following a balanced and varied diet.

REFERENCES

Menjar carn ens va fer humans

Actualment una part de la població mundial es pot permetre el luxe de triar la seva dieta: omnívora, vegetariana, vegana, crudívora, carnívora, paleodieta… però què menjaven els nostres avantpassats? Quina dieta s’ajusta més a la dels nostres avantpassats? Sense voler entrar en polèmica, parlarem sobre un dels fets crucials del pas de Australopitechus a Homo : la ingesta de carn.

QUÈ MENGEN ELS NOSTRES PARENTS?

Una de les raons que s’esgrimeixen per seguir una dieta vegana o vegetariana estricta és que com som micos, aquests s’alimenten de fruites i plantes, i a més, així s’aconsegueix una dieta més natural . Actualment i tradicionalment la base de l’alimentació mundial són les llavors de cereals (arròs, blat, blat de moro, etc.) i llegums (mongetes, llenties…), que moltes vegades necessiten elaboració (la farina, per exemple) i no tenen res a veure amb els seus avantpassats silvestres. Des de que es va inventar l’agricultura i ramaderia i s’han seleccionat les millors varietats per a consum humà, l’etiqueta de “natural” perd tot el seu sentit. Tot i que ara els transgènics estan en boca de tots, en realitat la modificació genètica la venim fent des de fa milers d’anys.

A la fila de dalt, avantpassats silvestres de l’enciam, pastanaga i blat de moro. A sota, les varietats domèstiques. Font

Que siguem micos i per això el natural és menjar vegetals, tampoc és del tot cert. Com els primats hem evolucionat als arbres, els homínids tenen una dieta estricta o principalment folívora -fulles- i frugívora -fruita- (goril·les , orangutans), mentre que els gibons , a més, completen la dieta amb invertebrats. Els nostres parents més propers però (bonobos, ximpanzés), són omnívors, ja que s’alimenten de vegetals, fruita, invertebrats i fins a petits mamífers i altres primats, encara que això sí, en menor quantitat que de vegetals.

Ximpanzé menjant carn. S’han descrit poblacions de ximpanzés que cacen amb llances construïdes per ells mateixos. Foto de Cristina M.Gomes, Institut Max Planck.

No és d’estranyar doncs, que els nostres ancestres directes llunyans, australopitecs com Lucy, tinguessin les fulles, fruites, arrels i tubercles com a base de la seva dieta. Algunes espècies, a més de vegetals, també s’alimentaven d’invertebrats i petits vertebrats, de manera similar als actuals ximpanzés.

HERBÍVORS I CARNÍVORS

Els fruits tenen més sucres, encara que no són molt abundants en comparació amb les fulles i tiges. Per contra, les fulles tenen menys valor nutritiu, ja que contenen moltes fibres que no podem assimilar, com la cel·lulosa. Els llegums contenen més proteïnes que els cereals, però alguns aminoàcids essencials i vitamines (com la B12) són inexistents en alguns vegetals o es troben en molt poca quantitat, o d’altres com el ferro de fàcil assimilació (ferro hemo) només es troben en aliments d’origen animal.

En resum, els vegetals són més difícils d’assimilar comparat amb la carn, de manera que mamífers herbívors presenten sistemes digestius més llargs, o amb estómacs compartimentats, masteguen durant llargs períodes de temps i alguns són remugants, mentre que els carnívors tenen sistemes digestius amb menor superfície d’absorció i necessiten poca masticació de l’aliment.

Sistemes digestius de herbívors no remugants, remugants, insectívors i carnívors. Autor desconegut

PER QUÈ ELS NOSTRES AVANTPASSATS VAN COMENÇAR A MENJAR MÉS CARN?

Fa 2,6 milions d’anys, un canvi climàtic va fer el nostre planeta més fred i sec. A l’Àfrica la sabana dominava gran part del territori, de manera que els homínids s’havien de conformar amb fulles dures, recobertes de ceres, tiges durs o amb espines, arrels… aquests recursos difícils de digerir van ser explotats pels paràntrops (Paranthropus), amb grans dents i potents musculatures a la mandíbula per poder triturar-los, encara que amb un cervell semblant al dels australopitecs. Es van extingir fa un milió d’anys.

Paranthropus boisei. Reconstrucció de John Gurche, foto de Xip Clark.

Però un altre grup d’hominins va trobar un tipus de recurs que els oferia més energia en menys quantitat, i eren més fàcils de mastegar: la carn. Homo habilis va ser el primer a menjar carn en major proporció que la resta de parents i a més, carns amb més quantitat de greix. Es tractava d’un oportunista: gairebé qualsevol cosa comestible l’aprofitava. Per contra els Paranthropus eren especialistes, de manera que si escassejava el seu aliment, el més probable era que morissin.

CERVELLS GRANS …

Mentre que Australophitecus i Paranthropus tenien una capacitat craniana de 400-500 cm3, Homo habilis va arribar a tenir fins a 700 cm3. Aquesta major grandària cerebral li permetia una major capacitat d’improvisació i versatilitat per trobar aliment.

Una de les coses que ens diferencia clarament de la resta de primats i animals és la gran mida del nostre cervell. Com haureu observat, H. habilis ja es classifica dins del gènere Homo, el nostre, per aquest gran salt de grandària cerebral, entre altres coses.

Comparació dels cranis d’Australophitecus, Paranthropus i Homo habilis. Crèdit: Peter S. Ungar et al, 2011.

Però un cervell gran també té inconvenients: el 25% d’energia del nostre cos el consumeix el cervell en repòs, H . habilis consumia el 15% i Australopithecus només el 10%. A més de quantitat, aquesta energia també ha de ser de qualitat: alguns àcids grassos per a un correcte funcionament del cervell només es troben en alguns fruits secs, però sobretot, en greix d’origen animal, més fàcil d’aconseguir si escassejaven els vegetals.

homo habilis, cosmocaixa, daynes, museu de la ciencia de barcelona
Reconstrucció d’Homo habilis d’Elisabeth Daynès, Cosmocaixa (Barcelona). Foto de Mireia Querol

… BUDELLS PETITS …

L’única manera de poder dedicar més energia al funcionament del cervell és reduir la mida d’altres òrgans que consumeixin molta energia (Aiello, L. i Wheeler, P, 1995). Cor, ronyons, fetge, són grans consumidors d’energia però vitals, de manera que la solució és reduir el tub digestiu i això només va ser possible amb el pas d’una dieta gairebé exclusivament vegetariana dels Australophitecus a una altra de més fàcil assimilació amb més contingut de proteïnes i greix animal d’H. habilis .

Comparació entre els òrgans consumidors d’energia entre humans i altres primats. Imatge de J. Rodríguez

… I EINES

Un cervell gran va donar a més un altre avantatge a H. habilis. Malgrat el seu físic (mida petita, sense urpes ni grans ullals) va poder explotar gran varietat de carn (primer com carronyers i després cada vegada més com a caçadors) per l’ús d’eines. Probablement els australopitecs van utilitzar algun tipus d’eina senzilla, majoritàriament de fusta, però les primeres proves segures que disposem de fabricació d’eines de pedra (lítiques) pertanyen a H. habilis. Això fins i tot els va permetre aprofitar el moll interior de l’os de grans preses abatudes per carnívors quan tota la carn ja havia estat consumida per altres animals. Actualment només les hienes i trencalosos poden accedir sense eines a aquest recurs. En no necessitar unes dents i mandíbules tan grans, el crani pot allotjar un cervell més gran.

habilis, carronyer, carroñero, habilis, herramientas ,eines
Grup d’H. habilis aprofitant la carronya d’un rinoceront. Font: DK FindOut

CONCLUSIÓ

En resum, l’augment del cervell de Homo va ser possible gràcies al canvi de dieta, que va permetre un tub digestiu més curt i un aparell mastegador més petit. Al seu torn, per obtenir aquests aliments més energètics es necessita més intel·ligència, que va donar com a resultat comportaments més complexos com l’ús d’eines treballades (tecnologia lítica Olduvaiana, Mode 1).

El nostre aparell digestiu és el resultat de milions d’anys d’evolució com omnívors oportunistes. Algunes dietes actuals estrictes (ja siguin vegetarianes o gairebé carnívores) entren en contradicció amb aquesta herència biològica i l’abús i accés a tota mena d’aliments ens porten tot tipus d’al·lèrgies i problemes alimentaris. El secret segueix sent una dieta equilibrada i variada.

REFERÈNCIES

Comer carne nos hizo humanos

Actualmente una parte de la población mundial se puede permitir el lujo de elegir su dieta: omnívora, vegetariana, vegana, crudívora, carnívora, paleodieta… pero ¿qué comían nuestros antepasados? ¿Qué dieta se ajusta más a la de nuestros ancestros? Sin querer entrar en polémica, hablaremos sobre uno de los hechos cruciales del paso de Australopitechus a Homo: la ingesta de carne.

¿QUÉ COMEN NUESTROS PARIENTES?

Una de las razones que se esgrimen para seguir una dieta vegana o vegetariana estricta es que como somos monos, éstos se alimentan de frutas y plantas, y además, así se consigue una dieta más natural. Actualmente y tradicionalmente la base de la alimentación mundial son las semillas de cereales (arroz, trigo, maíz, etc.) y legumbres (judías, lentejas…), que muchas veces precisan elaboración (la harina, por ejemplo) y no tienen nada que ver con sus antepasados silvestres. Desde que se inventó la agricultura y ganadería y se han seleccionado las mejores variedades para consumo humano, la etiqueta de “natural” pierde todo su sentido. Aunque ahora los transgénicos están en boca de todos, en realidad la modificación genética la venimos haciendo desde hace miles de años.

En la fila de arriba, antepasados silvestres de la lechuga, zanahora y maíz. Debajo, las variedades domésticas. Fuente
En la fila de arriba, antepasados silvestres de la lechuga, zanahoria y maíz. Debajo, las variedades domésticas. Fuente

Que seamos monos y por ello lo natural es comer vegetales, tampoco es del todo cierto. Como los primates hemos evolucionado en los árboles, los homínidos tienen una dieta estricta o principalmente folívora -hojas- y frugívora -fruta- (gorilas, orangutanes), mientras que los gibones, además, completan la dieta con invertebrados. Nuestros parientes más cercanos sin embargo (bonobos, chimpancés), son omnívoros, ya que se alimentan de vegetales, fruta, invertebrados y hasta pequeños mamíferos y otros primates, aunque eso sí, en menor cantidad que de vegetales.

Chimpancé comiendo carne. Se han descrito poblaciones de chimpancés que cazan con lanzas construidas por ellos mismos. Foto de Cristina M.Gomes, Instituto Max Planck.
Chimpancé comiendo carne. Se han descrito poblaciones de chimpancés que cazan con lanzas construidas por ellos mismos. Foto de Cristina M.Gomes, Instituto Max Planck.

No es de extrañar pues, que nuestros ancestros directos lejanos, australopitecos como Lucy, tuvieran las hojas, frutas, raíces y tubérculos como base de su dieta. Algunas especies, además de vegetales, también se alimentaban de invertebrados y pequeños vertebrados, de manera similar a los actuales chimpancés.

HERBÍVOROS Y CARNÍVOROS

Los frutos tienen más azúcares, aunque no son muy abundantes en comparación con las hojas y tallos. Por contra, las hojas tienen menor valor nutritivo, ya que contienen muchas fibras que no podemos asimilar, como la celulosa.  Las legumbres contienen más proteínas que los cereales, pero algunos aminoácidos esenciales y vitaminas (como la B12) son inexistentes en algunos vegetales o se encuentran en muy baja proporción, u otros como el hierro de fácil asimilación (hierro hemo) sólo se encuentran en alimentos de origen animal.

En resumen, los vegetales son más difíciles de asimilar comparado con los animales, por lo que mamíferos herbívoros presentan sistemas digestivos más largos, o con estómagos compartimentados, mastican durante largos periodos de tiempo y algunos son rumiantes, mientras que los carnívoros tienen sistemas digestivos con menor superficie de absorción y precisan poca masticación del alimento.

Sistemas digestivos de hervíboros no rumiantes, rumiantes, insectívoros y carnívoros. Autor desconocido
Sistemas digestivos de hervíboros no rumiantes, rumiantes, insectívoros y carnívoros. Autor desconocido

¿POR QUÉ NUESTROS ANCESTROS EMPEZARON A COMER MÁS CARNE?

Hace 2,6 millones de años, un cambio climático hizo nuestro planeta más frío y seco. En África la sabana dominaba gran parte del territorio,  por lo que los homínidos tenían que contentarse con hojas duras, recubiertas de ceras, tallos duros o con espinas, raíces… estos recursos difíciles de digerir fueron explotados por los parántropos (Paranthropus), con grandes dientes y potentes musculaturas en la mandíbula para poder triturarlos, aunque con un cerebro similar al de los australopitecus. Se extinguieron hace un millón de años.

Paranthropus boisei. Reconstrucción de John Gurche, foto de Chip Clark.
Paranthropus boisei. Reconstrucción de John Gurche, foto de Chip Clark.

Pero otro grupo de homininos encontró un tipo de recursos que les ofrecían más energía en menor cantidad, y eran más fáciles de masticar: la carne. Homo habilis fue el primero en comer carne en mayor proporción que el resto de parientes y además, carnes con más cantidad de grasa. Se trataba de un oportunista: casi cualquier cosa comestible la aprovechaba, por contra los Paranthropus eran especialistas, por lo que si escaseaba su alimento, lo más probable era que murieran.

CEREBROS GRANDES…

Mientras que Australophitecus y Paranthropus tenían una capacidad craneana de 400-500 cm3Homo habilis llegó a tener hasta 700 cm3. Este mayor tamaño cerebral le permitía una mayor capacidad de improvisación y versatilidad para encontrar alimento.

Una de las cosas que nos diferencia claramente del resto de primates y animales es el gran tamaño de nuestro cerebro. Como habréis observado, H. habilis ya se clasifica dentro del género Homo, el nuestro, por ese gran salto de tamaño cerebral, entre otras cosas.

Comparación de los cráneos de Australophitecus, Parantrhorpus y Homo habilis. Crédito: Peter S. Ungar et al, 2011.
Comparación de los cráneos de Australopithecus africanus, Paranthropus boisei y Homo habilis. Crédito: Peter S. Ungar et al, 2011.

Pero un cerebro grande también tiene inconvenientes: en Homo sapiens el 25% de energía de nuestro cuerpo lo consume el cerebro en reposo, H. habilis consumía el 15% y Australopithecus solamente el 10%. Además de cantidad, esta energía también tiene que sera de calidad: algunos ácidos grasos para un correcto funcionamiento del cerebro sólo se encuentran en algunos frutos secos, pero sobretodo, en grasa de origen animal, más fácil de conseguir si escaseaban los vegetales.

homo habilis, cosmocaixa, daynes, museu de la ciencia de barcelona
Reconstrucción de Homo habilis de Elisabeth Daynès, Cosmocaixa (Barcelona). Foto de Mireia Querol

…INTESTINOS PEQUEÑOS…

La única manera de poder dedicar más energía al funcionamiento del cerebro es reducir el tamaño de otros órganos que consuman mucha energía (Aiello, L. y Wheeler, P, 1995). Corazón, riñones, hígado, son grandes consumidores de energía pero vitales, por lo que la solución es reducir el tubo digestivo y eso sólo fue posible con el paso de una dieta casi exclusivamente vegetariana de los Australophitecus a otra de más fácil asimilación con más contenido de proteínas y grasa animal de H. habilis.

Comparación entre los órganos consumidores de energía entre humanos y otros primates. Imagen de J. Rodríguez
Comparación entre los órganos consumidores de energía entre humanos y otros primates. Imagen de J. Rodríguez

… Y HERRAMIENTAS

Un cerebro grande dio además otra ventaja a H. habilis. A pesar de su físico (pequeño tamaño, sin garras ni grandes colmillos) pudo explotar gran variedad de carne (primero como carroñeros y luego cada vez más como cazadores) debido al uso de herramientas. Probablemente los australopitecos usaran algún tipo de herramienta sencilla, mayoritariamente de madera, pero las primeras pruebas seguras que disponemos de fabricación de herramientas de piedra (líticas) pertenecen a H. habilis. Esto hasta les permitió aprovechar el tuétano interior del hueso de grandes presas abatidas por carnívoros cuando toda la carne ya había sido consumida por otros animales. Actualmente sólo las hienas y quebrantahuesos pueden acceder sin herramientas a este recurso. Al no necesitar unos dientes y mandíbulas tan grandes, el cráneo puede alojar un cerebro más grande.

Grupo de H. habilis carroñeando un rinoceronte.
Grupo de H. habilis carroñeando un rinoceronte y fabricando herramientas. Fuente: DK FindOut

CONCLUSIÓN

En resumen, el aumento del cerebro de Homo fue posible gracias al cambio de dieta, que permitió un tubo digestivo más corto y un aparato masticador más pequeño. A su vez, para obtener estos alimentos más energéticos se precisa más inteligencia, que dio como resultado comportamientos más complejos como el uso de herramientas trabajadas (tecnología lítica Olduvayense, Modo 1).

Nuestro aparato digestivo es el resultado de millones de años de evolución como omnívoros oportunistas. Algunas dietas actuales estrictas (ya sean vegetarianas o casi carnívoras) entran en contradicción con esta herencia biológica y el abuso y acceso a todo tipo de alimentos nos acarrean todo tipo de alergias y problemas alimentarios. El secreto sigue siendo una dieta equilibrada y variada.

REFERENCIAS

Avantpassats teus que no et van ensenyar a l’escola

Segur que et sonaran algun dels noms següents, ja que són els ancestres clàssics que vam aprendre a l’escola: Lucy, Homo habilis, Homo erectus, l’home de Neandertal… però la nostra història té molts més protagonistes, i de tant en tant es fan nous descobriments que modifiquen l’arbre del nostre llinatge. Descobreix en aquest article les últimes troballes que no van poder explicar-te els teus professors.

HOMO NALEDI

Reconstrucción facial de Homo naledi por John Gurche. Foto de Mark Thiessen.
Reconstrucció facial de Homo naledi per John Gurche. Foto de Mark Thiessen.

És gairebé obligat començar amb un dels descobriments més recents que està animant les discussions dins de la paleoantropologia per guanyar-se un lloc clau en el nostre arbre genealògic. El descobriment d’una nova espècie, Homo naledi, es va publicar el 10 de setembre de 2015 amb Lee Berger al capdavant. Es va descobrir en un sistema de coves de Sud-àfrica anomenat Rising Star, a la cambra Dinaledi (naledi significa “estrella” en la llengua local, el sesotho). És especialment interessant per diversos motius:

  • Al jaciment de moment s’han trobat més de 1.700 fòssils humans acumulats, convertint-lo en el més gran de Sud-Àfrica, per darrere de la famosa Sima de los Huesos (Atapuerca, Espanya), el més gran que existeix, amb més de 6.000 fòssils.
  • La cova és de molt difícil accés, amb passadissos de 19 cm d’ample, pel que va ser un equip seleccionat de 6 paleoantropòlogues primes qui va arribar fins a ells.
Esquema del sistema de cuevas de la cámara Dinaledi. Imagen de Jason Treat, NGM Staff, NGM maps, fuente: Lee Berger, Wits. Tomada de National Geographic.
Esquema del sistema de coves de la cambra Dinaledi. Imatge de Jason Treat, NGM Staff, NGM maps. Font: Lee Berger, Wits. Adaptada de National Geographic.
  • Els ossos van pertànyer a 15 individus de totes les edats, mascles i femelles, de manera que es pot obtenir extensa informació sobre aquesta nova espècie. Alguns fins i tot estaven a simple vista al terra de la cova i sense mineralitzar.
  • Les característiques físiques de H. naledi són una barreja de trets d’Homo (alçada, peus) i Australophitecus (espatlles, pit, pelvis), el gènere a partir del qual la majoria de científics creu que apareix Homo fa 2,8-2, 5 milions d’anys. Això pot suggerir que H. naledi podria ser el primer Homo, la baula perduda entre els australopitecs i nosaltres.

    Una parte de la impresionante cantidad de huesos de Homo naledi descubiertos. Foto de John Hawks
    Una part de la impressionant quantitat d’ossos d’Homo naledi descoberts. Foto de John Hawks
  • El més intrigant d’aquest descobriment és que es creu que els ossos van ser posats deliberadament allà. Per la geografia del lloc, l’accés a la cova era el mateix que l’actual, no van poder caure a la fossa, els ossos no va poder portar-los un torrent d’aigua ni cap animal, no presenten marques de violència… Podria tractar-se d’un ritual funerari? Fins ara, els primers ritus s’atribueixen a H. neanderthalensis, de característiques físiques més modernes i gran capacitat craniana comparada amb H. naledi (1.475 cm3 versus 560 cm3 com a màxim).

La resta d’Homo més antic conegut, amb 2,8 milions d’anys, correspon a una mandíbula trobada a Afar al març de 2015 que no s’ha associat a cap espècie. Va ser H. naledi el primer Homo? És realment una espècie molt antiga? És possible que tingués autoconsciència tan aviat i es preocupés pels seus morts? Malauradament, els investigadors encara no han pogut datar les restes, de manera que encara queden moltes preguntes sense respondre i caldrà esperar a futures interpretacions sobre una de les troballes més importants dels darrers temps.

ELS DENISOVANS

A la cova de Denisova (Sibèria) es va trobar el 2008 un fòssil gens espectacular: un tros d’un os de dit que es va datar en 30.000 anys d’antiguitat i es va atribuir a un individu d’uns 8 anys. Però quan es va extreure l’ADN, es va concloure que no pertanyia ni a H. sapiens ni a H. neanderthalensis, sinó a una espècie nova. Més tard es trobarien dos queixals d’un individu diferent de la mateixa població que el del dit, que va resultar ser una nena. En la mateixa cova a més, es van trobar restes neandertals i de sapiens.

Diente, muela, denisova, denisovanos, teeth, tooth, denisova
Els molars denisovans. Foto de l’Institut Max Planck.

És possible que els denisovans s’hibridessin amb sapiens? Estudis d’ADN en les poblacions actuals, indiquen que un 5% de l’ADN dels aborígens australians, papús i altres pobles de Melanèsia és denisovà. D’altra banda sabem que el 20% acumulat de les poblacions europees és Neandertal.

ON ELS SITUEM EN EL NOSTRE LLINATGE?

Es baralla que neandertals i denisovans van tenir un ancestre comú (H. heidelbergensis), que va emigrar cap a l’oest d’Europa i Àsia central donant lloc a H. neanderthalensis, que posteriorment es va hibridar amb nosaltres, i cap al sud-est asiàtic on donaria lloc al hominí de Denisova que també es va aparellar amb H. sapiens, el que explicaria la presència d’ADN en les poblacions actuals d’Australàsia.

¿COM EREN?

La inexistència de més fòssils o restes d’objectes i eines ens impedeixen saber quin aspecte tenien i quines eren les seves habilitats. Tampoc s’ha trobat explicació a la mancança d’ADN denisovà a les poblacions russes o xineses, tan properes geogràficament a la cova de Denisova. Els denisovans segueixen sent un gran misteri per a la ciència.

LA DONA DE FLORES

Homo floresiensis. Reconstrucción de John Gurche
Homo floresiensis. Reconstrucció de John Gurche. Foto de Chip Clark

Homo floresiensis, com el seu nom indica, va habitar a l’illa de Flores (Indonèsia) fa només entre 95.000 i 12.000 anys. Es va descobrir fa 12 anys. És l’únic jaciment on s’ha trobat aquesta espècie.

Com en els fòssils anteriors, la barreja de característiques va cridar l’atenció de la comunitat científica, sobretot per la seva petita capacitat craniana i la seva poca alçada, el que li va valer el sobrenom de hobbit. Primer es va pensar que es tractava d’un individu amb alguna patologia, o un pigmeu d’una espècie coneguda, ja que la seva morfologia era molt estranya tractant-se de fòssils tan moderns. Però actualment es disposa de restes d’almenys 12 individus amb les mateixes característiques, el que inclina la balança cap al seu rang d’espècie.

COM EREN?

  • Poca alçada: l’esquelet més complet pertany a una femella de només un metre d’alçada i 25 kg de pes.
  • Crani petit: la seva capacitat craniana (380-420 cm3) era semblant a la dels australopitecs o un ximpanzé actual, però el cervell tenia una anatomia més semblant a Homo. Les dents eren grans en relació al crani.
Reproducción de cráneo de Homo floresiensis. American Museum of National History. Foto de Mireia Querol
Reproducció del crani LB1 de Homo floresiensis. American Museum of National History. Foto de Mireia Querol
  • Peus llargs i cames curtes: els peus eren molt llargs en relació a les cames, que eren curtes i robustes. Això i més característiques suggereixen que la locomoció era diferent a la nostra i eren mals corredors.
  • Braços llargs: a més d’una proporció de braços més propera als australopitecs i H. habilis que a sapiens, eren robustos i tenien una musculatura poderosa.
  • Indústria lítica i foc: a més de trobar eines d’hominins anteriors, s’han associat eines a H. floresiensis amb una tecnologia semblant a la Olduvaiana africana, la primera que es va inventar. També dominava el foc.

PER QUÈ EREN TAN PETITS?

La controvèrsia continua: ¿era un descendent directe d’Australophitecus (¿com hauria viatjat tan lluny, des d’Àfrica?), o un membre recent del nostre arbre genealògic que es va quedar petit per manca de recursos?

El nanisme insular és un procés evolutiu conseqüència d’un aïllament a llarg termini en una zona petita amb recursos limitats i absència de depredadors. A Flores també es van trobar elefants pigmeus (Stegodon) que H. floresiensis caçava  amb aquesta adaptació. El procés contrari seria el gegantisme insular, en què animals que solen ser petits en el continent són gegants a les illes, com per exemple, les tortugues de les Galápagos o rates i llangardaixos extingits de Flores.

Un lagarto gigante se enfrenta al hombre de Flores. Imagen de National Geographic
Un llangardaix gegant s’enfronta a l’home de Flores que ha caçat una rata. Imatge de National Geographic

H. floresiensis podria ser resultat d’aquest nanisme, i alguns científics creuen que podria tractar-se en realitat d’Homo erectus reduïts. L’opinió majoritària en l’actualitat és que ja eren petits en arribar a Flores (com l’australopitec del que provenia), i que els trets moderns es deuen a una evolució convergent amb H. sapiens. Malauradament no s’ha pogut extreure ADN en bon estat per posicionar-lo a l’arbre filogenètic de manera segura.

Com va arribar a Flores? ¿Tenien llenguatge, feien art o tenien expressions culturals? ¿Van entrar en contacte amb la nostra espècie? Es van extingir a causa d’una erupció volcànica? Qui va fer les eines anteriors a H. floresiensis? El debat i les incògnites continuen obertes.

REFERÈNCIES

 

Antepasados tuyos que no te enseñaron en la escuela

Seguro que te sonarán alguno de los nombres siguientes, ya que son los ancestros clásicos que aprendimos en la escuela: Lucy, Homo habilis, Homo erectus, el hombre de Neandertal… pero nuestra historia tiene muchos más protagonistas, y cada cierto tiempo se hacen nuevos descubrimientos que modifican el árbol de nuestro linaje. Descubre en este artículo los últimos hallazgos que no pudieron explicarte tus profesores.

HOMO NALEDI

Reconstrucción facial de Homo naledi por John Gurche. Foto de Mark Thiessen.
Reconstrucción facial de Homo naledi por John Gurche. Foto de Mark Thiessen.

Es casi obligado empezar con uno de los descubrimientos más recientes que está animando las discusiones dentro de la paleoantropología para ganarse un lugar clave en nuestro árbol genealógico. El descubrimiento de una nueva especie, Homo naledise publicó el 10 de septiembre de 2015 con Lee Berger a la cabeza. Se descubrió en un sistema de cuevas de Sudáfrica llamado Rising Star, en la cámara Dinaledi (naledi significa estrella en la lengua local, el sesotho). Es especialmente interesante por varios motivos:

  • En el yacimiento de momento se han encontrado más de 1.700 fósiles humanos acumulados, convirtiéndolo en el mayor de Sudáfrica, por detrás de la famosa Sima de los Huesos (Atapuerca, España), el más grande que existe, con más de 6.000 fósiles.
  • La cueva es de muy difícil acceso, con pasillos de 19 cm de ancho, por lo que fue un equipo seleccionado de 6 paleoantropólogas delgadas el que llegó hasta ellos.
Esquema del sistema de cuevas de la cámara Dinaledi. Imagen de Jason Treat, NGM Staff, NGM maps, fuente: Lee Berger, Wits. Tomada de National Geographic.
Esquema del sistema de cuevas de la cámara Dinaledi. Imagen de Jason Treat, NGM Staff, NGM maps, Fuente: Lee Berger, Wits. Adaptada de National Geographic.
  • Los huesos pertenecieron a 15 individuos de todas las edades, machos y hembras, con lo que se puede obtener extensa información sobre esta nueva especie. Algunos incluso estaban a simple vista en el suelo de la cueva y sin mineralizar.
  • Las características físicas de H. naledi son una mezcla de rasgos de Homo (altura, pies) y Australophitecus (hombros, pecho, pelvis), el género a partir del cual la mayoría de científicos cree que aparece Homo hace 2,8-2,5 millones de años. Esto puede sugerir que H. naledi podría ser el primer Homo, el eslabón perdido entre los australopitecos y nosotros.

    Una parte de la impresionante cantidad de huesos de Homo naledi descubiertos. Foto de John Hawks
    Una parte de la impresionante cantidad de huesos de Homo naledi descubiertos. Foto de John Hawks
  • Lo más intrigante de este descubrimiento, es que se cree que los huesos fueron puestos deliberadamente allí. Por la geografía del lugar, el acceso a la cueva era el mismo que el actual, no pudieron caerse a la fosa, los huesos no pudo traerlos un torrente de agua ni ningún animal, no presentan marcas de violencia… ¿Podría tratarse de un ritual funerario? Hasta ahora, los primeros ritos se atribuyen a H. neanderthalensis, de características físicas más modernas y gran capacidad craneana comparada con H. naledi (1.475 cm3 versus 560 cm3  como máximo).

El resto de Homo más antiguo conocido, con 2,8 millones de años, corresponde a una mandíbula encontrada en Afar en marzo de 2015 que no se ha asociado a ninguna especie. ¿Fue H. naledi el primero Homo? ¿Es realmente una especie muy antigua? ¿Es posible que tuviera autoconsciencia tan pronto y se preocupara por sus muertos? Desgraciadamente, los investigadores aún no han podido datar los restos, por lo que aún quedan muchas preguntas sin responder y habrá que esperar a futuras interpretaciones sobre uno de los hallazgos más importantes de los últimos tiempos.

LOS DENISOVANOS

En la cueva de Denisova (Siberia) se encontró en 2008 un fósil nada espectacular: un trozo de un hueso de dedo que se dató en 30.000 años de antigüedad y atribuyó a un individuo de unos 8 años. Pero cuando se extrajo el ADN, se concluyó que no pertenecía ni a H. sapiens ni a H. neanderthalensis, sino a una especie nueva. Más tarde se encontrarían dos muelas de un individuo distinto de la misma población que el del dedo, que resultó ser una niña. En la misma cueva además, se encontraron restos neandertales y de sapiens.

Diente, muela, denisova, denisovanos, teeth, tooth, denisova
Los molares denisovanos. Foto del Instituto Max Planck.

¿Es posible que los denisovanos se hibridaran con sapiens? Estudios de ADN en las poblaciones actuales, indican que un 5% del ADN de los aborígenes australianos, papúes y otros pueblos de Melanesia es denisovano. Por otro lado sabemos que el 20% acumulado de las poblaciones europeas es Neandertal.

¿DÓNDE LOS SITUAMOS EN NUESTRO LINAJE?

Se baraja que neandertales y denisovanos tuvieron un ancestro común (H. heidelbergensis), que emigró hacia el oeste de Europa  y Asia central dando lugar a H. neanderthalensis, que posteriormente se hibridó con nosotros, y hacia el sureste asiático donde daría lugar al hominino de Denisova que también se emparejó con H. sapiens, lo que explicaría la presencia de ADN en las poblaciones actuales de Australasia.

¿CÓMO ERAN?

La inexistencia de más fósiles o restos de objetos y herramientas nos impiden saber qué aspecto tenían y cuáles eran sus habilidades. Tampoco se ha hallado explicación a la falta de ADN denisovano en las poblaciones rusas o chinas, tan cercanas geográficamente a la cueva de Denisova. Los denisovanos siguen siendo un gran misterio para la ciencia.

LA MUJER DE FLORES

Homo floresiensis. Reconstrucción de John Gurche
Homo floresiensis. Reconstrucción de John Gurche. Foto de Chip Clark

Homo floresiensis, como su nombre indica, habitó en la isla de Flores (Indonesia) hace sólo entre 95.000 y 12.000 años. Se descubrió hace 12 años. Es el único yacimiento donde se ha encontrado esta especie.

Como en los fósiles anteriores, la mezcla de características llamó la atención de la comunidad científica, sobretodo por su pequeña capacidad craneana y su baja estatura, lo que le valió el apodo de hobbit. Primero se pensó que se trataba de un individuo con alguna patología, o un pigmeo de una especie conocida, ya que su morfología era muy extraña tratándose de fósiles tan modernos. Pero actualmente se dispone de restos de al menos 12 individuos con las misma características, lo que inclina la balanza hacia su rango de especie.

¿CÓMO ERAN?

  • Pequeña estatura: el esqueleto más completo pertenece a una hembra de sólo un metro de altura y 25 kg de peso.
  • Cráneo pequeño: su capacidad craneana (380-420 cm3) era parecida a la de los australopitecos o a un chimpancé actual, pero el cerebro tenía una anatomía más parecida a Homo. Los dientes eran grandes en relación al cráneo.
Reproducción de cráneo de Homo floresiensis. American Museum of National History. Foto de Mireia Querol
Reproducción del cráneo LB1 de Homo floresiensis. American Museum of National History. Foto de Mireia Querol
  • Pies largos y piernas cortas: los pies eran muy largos en relación a las piernas, que eran cortas y robustas. Esto y más características sugieren que la locomoción era distinta a la nuestra y eran malos corredores.
  • Brazos largos: además de una proporción de brazos más cercana a los australopitecos y H. habilis que a sapiens, eran robustos y tenían una musculatura poderosa.
  • Indústria lítica y fuego: además de encontrarse herramientas de homininos anteriores, se han asociado herramientas a H. floresiensis con una tecnología parecida a la Olduvayana africana, la primera que se inventó. También dominaba el fuego.

¿POR QUÉ ERAN TAN PEQUEÑOS?

La controversia continúa: ¿era un descendiente directo de Australophitecus (¿cómo habría viajado tan lejos, desde África?), o un miembro reciente de nuestro árbol genealógico que se quedó pequeño por falta de recursos?

El enanismo insular es un proceso evolutivo consecuencia de un aislamiento a largo plazo en una zona pequeña con recursos limitados y ausencia de depredadores. En Flores también se encontraron elefantes pigmeos (Stegodon) que H. floresiensis cazaba con esta adaptación. El proceso contrario sería el gigantismo insular, en el que animales que suelen ser pequeños en el continente son gigantes en las islas, como por ejemplo, las tortugas de las Galápagos o ratas y lagartos extintos de Flores.

Un lagarto gigante se enfrenta al hombre de Flores. Imagen de National Geographic
Un lagarto gigante se enfrenta al hombre de Flores que ha cazado una rata. Imagen de National Geographic

H. floresiensis podría ser resultado de este enanismo, y algunos científicos creen que podría tratarse en realidad de Homo erectus  reducidos. La opinión mayoritaria en la actualidad es que ya eran pequeños al llegar a Flores (como el australopiteco del que provenía), y que los rasgos modernos se deben a una evolución convergente con H. sapiens. Desgraciadamente no se ha podido extraer ADN en buen estado para posicionarlo en el árbol filogenético de manera segura.

¿Cómo llegaron a Flores? ¿Tenían lenguaje, hacían arte o tenían expresiones culturales? ¿Entraron en contacto con nuestra especie? ¿Se extinguieron debido a una erupción volcánica? ¿Quién hizo las herramientas anteriores a H. floresiensis? El debate y las incógnitas siguen abiertas.

REFERENCIAS

Mireia Querol Rovira

Ancestors they didn’t teach you in school

Surely you know any of the following names because they are classic ancestors we learned in school: Lucy, Homo habilis, Homo erectus, Neanderthals… but our history has many more players, and every so often new discoveries are made that change our lineage tree. Find out in this article the latest findings your teachers could not explain to you .

HOMO NALEDI

Reconstrucción facial de Homo naledi por John Gurche. Foto de Mark Thiessen.
Homo naledi’s facial reconstruction by John Gurche. Photo: Mark Thiessen.

It is almost forced to start with one of the latest discoveries that is encouraging discussions in paleoanthropology to gain a key position in our family tree. The discovery of a new species, Homo naledi, was published the September 10, 2015 by Lee Berger et al. It was discovered in a cave system in South Africa named Rising Star at the Dinaledi chamber (“Naledi” means “star” in the local language, Sesotho). It is especially interesting for several reasons:

  • At the moment in the site have been found more than 1,700 human fossils accumulated, making it the largest of South Africa, behind the famous Sima de los Huesos (“Pit of Bones”, Atapuerca, Spain), the largest of the world, with more than 6,000 fossils.
  • The cave is very difficult to access, with corridors of only 19 cm wide, so it was a selected team of 6 thin paleoantropologysts (all women) that reached them.
Esquema del sistema de cuevas de la cámara Dinaledi. Imagen de Jason Treat, NGM Staff, NGM maps, fuente: Lee Berger, Wits. Tomada de National Geographic.
Scheme of the cave system of Dinaledi’s chamber. Image by  Jason Treat, NGM Staff, NGM maps, Source: Lee Berger, Wits. Adapted from National Geographic.
  • The bones belonged to 15 individuals of all ages, male and female, so we can get extensive information about the new species. Some were even on the floor of the cave without mineralize.
  • The physical characteristics of H. naledi are a mix of Homo traits (height, feet) and Australopithecus (shoulders, chest, pelvis), the genus from which most scientists believe Homo appears about 2.8 to 2, 5 million years ago. This may suggest that H. naledi could be the first Homo, the missing link between Australopithecus and us.

    Una parte de la impresionante cantidad de huesos de Homo naledi descubiertos. Foto de John Hawks
    Some of the impressive number of bones discovered Homo naledi. Photo by John Hawks
  • The most intriguing of this discovery, it is believed that the bones were placed there deliberately. By geography, access to the cave was the same as today, they could not fall into the pit, the bones could not be brought by a water flooding or any animal, they have no marks of violence … It could be a funeral ritual? So far, the first rites are attributed to H. neanderthalensis, with most modern physical characteristics and a large cranial capacity compared to H. naledi (1.475 cm3 versus 560 cm3  at the most).

The oldest known Homo fossil, 2.8 million years old, corresponds to a jaw found in Afar in March 2015 which has not been associated to any species. Was H. naledi the first Homo? Is it really an ancient species? Is it possible they had self-awareness so early and cared for their dead? Unfortunately, researchers have not been able to date the remains yet, so many questions remain unanswered and we will must wait for future interpretations of one of the most important discoveries of recent times.

THE DENISOVANS

In Denisova Cave (Siberia) in 2008 was found a non-spectacular fossil: a piece of a finger bone that was dated 30,000 years old and attributed to an individual of about 8 years which turned out to be a gir. But when DNA was extracted, it was concluded that belonged neither to H. sapiens or H. neanderthalensis, but to a new species. Later two teeth of another individual of the same population were found. In the same cave also Sapiens and Neanderthal remains were found.

Diente, muela, denisova, denisovanos, teeth, tooth, denisova
The denisovan teeth.  Photo by Max Planck Institute.

Is it possible that Denisovans hybridized with Sapiens? DNA studies in the current populations indicate that 5% of DNA aboriginal Australians, Papuans and other peoples of Melanesia is Denisovan. On the other hand we know that 20% of the DNA of accumulated European populations is Neanderthal.

WHERE DO WE LOCATE THEM IN OUR FAMILY TREE?

It is thought that Neanderthals and Denisovans had a common ancestor (H. heidelbergensis), who emigrated to western Europe and Central Asia evolving to H. neanderthalensis, who subsequently hybridized with us, and from Southeast Asia where would evolve in the hominin Denisova, who also hybridized with H. sapiens. This would explain the presence of DNA in the current populations of Australasia.

HOW THEY WERE LIKE?

The absence of more fossils or traces of objects and tools prevent us to know how they looked like and what were their skills. Nor it has been found explanation for the lack of Denisovan DNA in the Russian or Chinese populations, so close geographically to the Denisova cave. Denisovans remain a mystery to science.

THE FLORES WOMAN

Homo floresiensis. Reconstrucción de John Gurche
Homo floresiensis. Reconstruction by John Gurche. Photo by Chip Clark

Homo floresiensis, as its name indicates, lived on the island of Flores (Indonesia) only between 95,000 and 12,000 years ago. It was discovered 12 years ago. It is the only site where this species is found.

As in previous fossils, the mix of features caught the attention of the scientific community, especially for its small cranial capacity and height, earning them the nickname hobbit. First they thought it was an individual with a pathology, or a pygmy of a known species, as their morphology was very strange in a so modern fossil. But now we have remains of at least 12 individuals with the same traits, so we can talk (for the moment) of another species.

HOW THEY WERE LIKE?

  • Small height: the most complete skeleton belongs to a female only one meter tall and 25 kg weight.
  • Small skull: their cranial capacity (380-420 cm3) was similar to the current Australopithecus or a current chimpanzee, but the brain had a more similar Homo anatomy. The teeth were large relative to the skull.
Reproducción de cráneo de Homo floresiensis. American Museum of National History. Foto de Mireia Querol
homo floresiensis (LB1) skull cast. American Museum of National History. Photo by Mireia Querol
  • Long feet and short legs: feet were very long in relation to the legs, which were short and stout. This and more features suggest that locomotion was different from ours and were bad runners.
  • Long arms: besides a proportion nearest to Australopithecus and H. habilis than H. sapiens, arms were robust and had a powerful musculature.
  • Stone tools and fire: besides the existence of tools of earlier hominans found in the cave, some tools have been associated to H. floresiensis with a technology similar to the Oldowan Industry, the first to be invented. Also they dominated the fire.

WHY THEY WERE SO SMALL?

Controversy continues: was a direct descendant of Australopithecus (how could they have traveled so far from Africa?), or a recent member of our family tree so small due to lack of resources?

The insular dwarfism is an evolutionary process due to a long-term isolation in a small area with limited resources and lack of predators. Flores pygmy elephants (Stegodon) hunted by H. floresiensis  with this adaptation were also found. The opposite process it is the island gigantism, in which animals that are usually small on the continent are giants in the islands, such as the Galapagos turtles and the extinct lizards or rats of Flores.

Un lagarto gigante se enfrenta al hombre de Flores. Imagen de National Geographic
A giant lizard faces Flores man who has caught a rat. Image by National Geographic

H. floresiensis may be the result of this dwarfism, and some scientists believe it could actually be a reduced Homo erectus. The majority opinion today is that they were already so small when they reached Flores (such as the  Australopithecus from whom evolved), and modern features are due to convergent evolution with H. sapiens. Unfortunately it has not been able to extract DNA in good condition to put them in the phylogenetic tree for sure.

How did they get to Flores? They had a language, art and cultural expressions? Did they get in contact with our species? They were extinct due to a volcanic eruption? Who made the other ancient tools previous to H. floresiensis? The debate and the unknowns remain open.

REFERENCES