Arxiu d'etiquetes: cerebro

Comer carne nos hizo humanos

Actualmente una parte de la población mundial se puede permitir el lujo de elegir su dieta: omnívora, vegetariana, vegana, crudívora, carnívora, paleodieta… pero ¿qué comían nuestros antepasados? ¿Qué dieta se ajusta más a la de nuestros ancestros? Sin querer entrar en polémica, hablaremos sobre uno de los hechos cruciales del paso de Australopitechus a Homo: la ingesta de carne.

¿QUÉ COMEN NUESTROS PARIENTES?

Una de las razones que se esgrimen para seguir una dieta vegana o vegetariana estricta es que como somos monos, éstos se alimentan de frutas y plantas, y además, así se consigue una dieta más natural. Actualmente y tradicionalmente la base de la alimentación mundial son las semillas de cereales (arroz, trigo, maíz, etc.) y legumbres (judías, lentejas…), que muchas veces precisan elaboración (la harina, por ejemplo) y no tienen nada que ver con sus antepasados silvestres. Desde que se inventó la agricultura y ganadería y se han seleccionado las mejores variedades para consumo humano, la etiqueta de “natural” pierde todo su sentido. Aunque ahora los transgénicos están en boca de todos, en realidad la modificación genética la venimos haciendo desde hace miles de años.

En la fila de arriba, antepasados silvestres de la lechuga, zanahora y maíz. Debajo, las variedades domésticas. Fuente
En la fila de arriba, antepasados silvestres de la lechuga, zanahoria y maíz. Debajo, las variedades domésticas. Fuente

Que seamos monos y por ello lo natural es comer vegetales, tampoco es del todo cierto. Como los primates hemos evolucionado en los árboles, los homínidos tienen una dieta estricta o principalmente folívora -hojas- y frugívora -fruta- (gorilas, orangutanes), mientras que los gibones, además, completan la dieta con invertebrados. Nuestros parientes más cercanos sin embargo (bonobos, chimpancés), son omnívoros, ya que se alimentan de vegetales, fruta, invertebrados y hasta pequeños mamíferos y otros primates, aunque eso sí, en menor cantidad que de vegetales.

Chimpancé comiendo carne. Se han descrito poblaciones de chimpancés que cazan con lanzas construidas por ellos mismos. Foto de Cristina M.Gomes, Instituto Max Planck.
Chimpancé comiendo carne. Se han descrito poblaciones de chimpancés que cazan con lanzas construidas por ellos mismos. Foto de Cristina M.Gomes, Instituto Max Planck.

No es de extrañar pues, que nuestros ancestros directos lejanos, australopitecos como Lucy, tuvieran las hojas, frutas, raíces y tubérculos como base de su dieta. Algunas especies, además de vegetales, también se alimentaban de invertebrados y pequeños vertebrados, de manera similar a los actuales chimpancés.

HERBÍVOROS Y CARNÍVOROS

Los frutos tienen más azúcares, aunque no son muy abundantes en comparación con las hojas y tallos. Por contra, las hojas tienen menor valor nutritivo, ya que contienen muchas fibras que no podemos asimilar, como la celulosa.  Las legumbres contienen más proteínas que los cereales, pero algunos aminoácidos esenciales y vitaminas (como la B12) son inexistentes en algunos vegetales o se encuentran en muy baja proporción, u otros como el hierro de fácil asimilación (hierro hemo) sólo se encuentran en alimentos de origen animal.

En resumen, los vegetales son más difíciles de asimilar comparado con los animales, por lo que mamíferos herbívoros presentan sistemas digestivos más largos, o con estómagos compartimentados, mastican durante largos periodos de tiempo y algunos son rumiantes, mientras que los carnívoros tienen sistemas digestivos con menor superficie de absorción y precisan poca masticación del alimento.

Sistemas digestivos de hervíboros no rumiantes, rumiantes, insectívoros y carnívoros. Autor desconocido
Sistemas digestivos de hervíboros no rumiantes, rumiantes, insectívoros y carnívoros. Autor desconocido

¿POR QUÉ NUESTROS ANCESTROS EMPEZARON A COMER MÁS CARNE?

Hace 2,6 millones de años, un cambio climático hizo nuestro planeta más frío y seco. En África la sabana dominaba gran parte del territorio,  por lo que los homínidos tenían que contentarse con hojas duras, recubiertas de ceras, tallos duros o con espinas, raíces… estos recursos difíciles de digerir fueron explotados por los parántropos (Paranthropus), con grandes dientes y potentes musculaturas en la mandíbula para poder triturarlos, aunque con un cerebro similar al de los australopitecus. Se extinguieron hace un millón de años.

Paranthropus boisei. Reconstrucción de John Gurche, foto de Chip Clark.
Paranthropus boisei. Reconstrucción de John Gurche, foto de Chip Clark.

Pero otro grupo de homininos encontró un tipo de recursos que les ofrecían más energía en menor cantidad, y eran más fáciles de masticar: la carne. Homo habilis fue el primero en comer carne en mayor proporción que el resto de parientes y además, carnes con más cantidad de grasa. Se trataba de un oportunista: casi cualquier cosa comestible la aprovechaba, por contra los Paranthropus eran especialistas, por lo que si escaseaba su alimento, lo más probable era que murieran.

CEREBROS GRANDES…

Mientras que Australophitecus y Paranthropus tenían una capacidad craneana de 400-500 cm3Homo habilis llegó a tener hasta 700 cm3. Este mayor tamaño cerebral le permitía una mayor capacidad de improvisación y versatilidad para encontrar alimento.

Una de las cosas que nos diferencia claramente del resto de primates y animales es el gran tamaño de nuestro cerebro. Como habréis observado, H. habilis ya se clasifica dentro del género Homo, el nuestro, por ese gran salto de tamaño cerebral, entre otras cosas.

Comparación de los cráneos de Australophitecus, Parantrhorpus y Homo habilis. Crédito: Peter S. Ungar et al, 2011.
Comparación de los cráneos de Australopithecus africanus, Paranthropus boisei y Homo habilis. Crédito: Peter S. Ungar et al, 2011.

Pero un cerebro grande también tiene inconvenientes: en Homo sapiens el 25% de energía de nuestro cuerpo lo consume el cerebro en reposo, H. habilis consumía el 15% y Australopithecus solamente el 10%. Además de cantidad, esta energía también tiene que sera de calidad: algunos ácidos grasos para un correcto funcionamiento del cerebro sólo se encuentran en algunos frutos secos, pero sobretodo, en grasa de origen animal, más fácil de conseguir si escaseaban los vegetales.

homo habilis, cosmocaixa, daynes, museu de la ciencia de barcelona
Reconstrucción de Homo habilis de Elisabeth Daynès, Cosmocaixa (Barcelona). Foto de Mireia Querol

…INTESTINOS PEQUEÑOS…

La única manera de poder dedicar más energía al funcionamiento del cerebro es reducir el tamaño de otros órganos que consuman mucha energía (Aiello, L. y Wheeler, P, 1995). Corazón, riñones, hígado, son grandes consumidores de energía pero vitales, por lo que la solución es reducir el tubo digestivo y eso sólo fue posible con el paso de una dieta casi exclusivamente vegetariana de los Australophitecus a otra de más fácil asimilación con más contenido de proteínas y grasa animal de H. habilis.

Comparación entre los órganos consumidores de energía entre humanos y otros primates. Imagen de J. Rodríguez
Comparación entre los órganos consumidores de energía entre humanos y otros primates. Imagen de J. Rodríguez

… Y HERRAMIENTAS

Un cerebro grande dio además otra ventaja a H. habilis. A pesar de su físico (pequeño tamaño, sin garras ni grandes colmillos) pudo explotar gran variedad de carne (primero como carroñeros y luego cada vez más como cazadores) debido al uso de herramientas. Probablemente los australopitecos usaran algún tipo de herramienta sencilla, mayoritariamente de madera, pero las primeras pruebas seguras que disponemos de fabricación de herramientas de piedra (líticas) pertenecen a H. habilis. Esto hasta les permitió aprovechar el tuétano interior del hueso de grandes presas abatidas por carnívoros cuando toda la carne ya había sido consumida por otros animales. Actualmente sólo las hienas y quebrantahuesos pueden acceder sin herramientas a este recurso. Al no necesitar unos dientes y mandíbulas tan grandes, el cráneo puede alojar un cerebro más grande.

Grupo de H. habilis carroñeando un rinoceronte.
Grupo de H. habilis carroñeando un rinoceronte y fabricando herramientas. Fuente: DK FindOut

CONCLUSIÓN

En resumen, el aumento del cerebro de Homo fue posible gracias al cambio de dieta, que permitió un tubo digestivo más corto y un aparato masticador más pequeño. A su vez, para obtener estos alimentos más energéticos se precisa más inteligencia, que dio como resultado comportamientos más complejos como el uso de herramientas trabajadas (tecnología lítica Olduvayense, Modo 1).

Nuestro aparato digestivo es el resultado de millones de años de evolución como omnívoros oportunistas. Algunas dietas actuales estrictas (ya sean vegetarianas o casi carnívoras) entran en contradicción con esta herencia biológica y el abuso y acceso a todo tipo de alimentos nos acarrean todo tipo de alergias y problemas alimentarios. El secreto sigue siendo una dieta equilibrada y variada.

REFERENCIAS

Koko, la gorila que habla con las manos

El origen del lenguaje es una de las incógnitas que más debate crea entre los antropólogos. ¿Somos los únicos animales con un lenguaje con gramática? ¿Hablaban nuestros antepasados? ¿Los animales sólo se comunican por imitación de sonidos simples? En este artículo intentaremos dar respuesta a estas cuestiones y conoceremos a Koko, la gorila que aprendió el lenguaje de signos.

¿PUEDEN HABLAR LOS ANIMALES?

Claramente la mayoría de seres vivos se comunican de alguna manera, ya sea mediante señales visuales, olfativas o químicas, acústicas… El caso más claro y cercano lo tenemos en algunos animales: ladridos, maullidos… pero también las plantas se comunican.

Seguramente habrás oído alguna vez algún loro o periquito decir palabras, incluso los cuervos son estupendos imitadores. Pero no deja de ser eso, imitación de pocas palabras. Son incapaces de construir frases o utilizar las palabras que conocen para expresar nuevos conceptos. O mantener una conversación. En algunas ocasiones los científicos han educado a crías de simios como humanos, en un intento de que aprendieran a hablar. Nunca lo consiguieron.

¿QUÉ ES NECESARIO PARA HABLAR?

Dada la profundidad del tema, podemos resumir que para hablar es indispensable tener las capacidades cognitivas necesarias y un aparato fonador con un físico que permita controlar la entrada y salida del aire de manera determinada. Puesto que algunos animales como cetáceos, aves o simios superiores poseen elevadas capacidades cognitivas, ¿por qué no se ponen a hablar de la misma manera que nosotros? Aún así, empezamos a comprender su manera de comunicarse, por lo que es posible que algunos posean algún tipo de gramática, es decir, un lenguaje, como los delfines o ciertos cantos de aves. O quizá deberíamos matizar qué es el lenguaje. En el artículo que nos ocupa vamos a centrarnos en el caso de los primates, especialmente gorilas y chimpancés.

APARATO FONADOR

La laringe alberga las cuerdas vocales. Observa la diferencia entre un humano y un chimpancé:

Aparato fonador de un chimpancé y un humano. Autor desconocido. foto tomada de UOC.
Aparato fonador de un chimpancé y un humano. Autor desconocido. Foto tomada de UOC.

Los humanos, además de tener las cuerdas vocales más bajas,  tenemos la cavidad bucal y nasal más corta. A grandes rasgos, para poder producir vocales de manera clara, núcleo de la comunicación oral, la laringe tiene que estar en una posición baja. Es por esto que los chimpancés, por sus limitaciones físicas para el habla, no pueden hacerlo.

Módulo con las diferentes posiciones del aparato fonador necesarias para emitir vocales. Foto de Mireia Querol, ComoCaixa, Barcelona.

Módulo con las diferentes posiciones del aparato fonador necesarias para emitir vocales. Foto de Mireia Querol, ComoCaixa, Barcelona.

Para investigar si nuestros ancestros podían hablar, los estudios se centran principalmente en la morfología del hueso hioides, la posición de la faringe, la base del cráneo y las impresiones del cerebro en el interior del cráneo. Las últimas investigaciones con el Cráneo 5 de la Sima de los Huesos,  perteneciente a un Neandertal, junto con otros estudios de otros fósiles, parecen indicar que hace 500.000 años ya existía un aparato fonador como el nuestro. ¿Hablaban los neandertales si en principio tenían el físico necesario?

CAPACIDAD CEREBRAL

Los humanos somos los mamíferos con el cerebro más grande en relación a nuestro cuerpo. Se compara la inteligencia de un chimpancé con la de un niño o niña de 4 años. Si no pueden hablar por limitaciones físicas, ¿podrían hacerlo de otra manera?

Cerebro humano señalando las áreas de Broca y Wernicke, responsables del lenguaje. Foto de dominio público tomada de NIH
Cerebro humano señalando las áreas de Broca y Wernicke, responsables del lenguaje. Homo habilis ya las poseía. Foto de dominio público tomada de NIH

Según un estudio publicado en Nature, el gen FOXP2 parece ser el responsable de nuestra capacidad de control preciso del movimiento que permite el habla. Personas con alguna copia inactiva de este gen, tienen graves problemas de habla y lenguaje. El gen FOXP2 sólo es distinto en dos aminoácidos entre chimpancés y humanos, y al parecer sería el responsable que ni ellos, ni el resto de vertebrados puedan hablar. Esta diferencia, esta mutación, se cree que apareció hace 500.000 años. Pääbo Svante y su equipo descubrieron que este gen ya era igual que el nuestro en los neandertales. Si esto es cierto, unido a lo visto en el apartado anterior, podemos casi asegurar que los neandertales podían hablar.

ENSEÑANDO A HABLAR A OTROS SIMIOS

Puesto que no pueden hablar, se ha enseñado a otros simios a comunicarse con humanos mediante lexigramas (dibujos que respresentan palabras) y lengua de signos. Washoe fue la primera simio no humana en comunicarse con la lengua de signos americana (ASL). Era un chimpancé, aprendió unas 350 palabras y enseñó algunas a su hijo Loulis. Otros chimpancés han sido capaces de ello, pero lo más fascinante es el descubrimiento de este comportamiento de comunicación por signos en chimpancés salvajes (obviamente, signos propios de los chimpancés, no de la ASL). El bonobo Kanzhi se comunicaba con lexigramas, y Koko se ha convertido en una gorila mediática gracias a su dominio de la ASL.

LA GORILA KOKO

Koko (diminutivo de Hanabiko, en japonés, “fuegos artificiales”) es un gorila occidental de las tierras bajas. Los gorilas son los simios y homínidos actuales más grandes que existen, con hasta 180 Kg de peso en los machos.

Koko en 2010. Foto de Ron Cohn, Koko.org.
Koko en 2010. Foto de Ron Cohn, Koko.org.

Después de los chimpancés y bonobos, son los que más se asemejan genéticamente a los humanos (compartimos más del 98% del ADN). Existen dos especies de gorilas:

  • Gorila occidental (Gorilla gorilla): incluye dos subespecies, el gorila occidental de las tierras bajas (Gorilla gorilla gorilla) y el Gorila del río Cross (Gorilla gorilla diehli). Está críticamente amenazada según la IUCN.
  • Gorila oriental (Gorilla beringei): incluye el gorila de montaña (Gorilla beringei beringei) y el gorila oriental de las tierras bajas (Gorilla beringei graueri). Está amenzada según la IUCN.
Distribución gorila, bonobo, chimpance, orangutan, distribution, gorilla, chimpanzee,
Distribución de los grandes simios. Mapa compartido desde Great Apes Survival Partnership

APRENDIZAJE DE KOKO

Koko nació en 1971 en el Zoo de San Francisco, y actualmente vive en la Gorilla Foundation de Redwood City, California. A partir de los 6 meses de edad la doctora Francine (Penny) Patterson (entonces estudiante de doctorado) y el Dr. Ron Cohn le enseñaron la lengua americana de signos (ASL). Otros gorilas que fueron unidos al proyecto fueron Michael (en 1976) y Ndume (1991).

Penny enseñando a Koko (derecha) y Michael la ASL. Foto tomada de Koko.org
Penny enseñando a Koko (derecha) y Michael la ASL. Foto tomada de Koko.org

Desde entonces, Koko ha aprendido a signar 1.000 signos de la ASL y entiende aproximadamente unas 2.000 palabras en inglés. Es incluso capaz de combinar diferentes signos para explicar conceptos si no conoce la palabra. Michael y Ndume también consiguieron comunicarse mediante signos: Ndume aprendió algunos de Koko, lo que podría demostrar que el caso de Koko no es único sino que la comunicación gestual es intrínseca en gorilas.

En este vídeo donde Penny pregunta a Koko que le gustaría hacer con su tiempo libre. Ella responde que le gustaría tener un bebé y le agradece cuando Penny le dice que lo están intentando:

OTRAS CAPACIDADES DE KOKO

Koko, al vivir en un ambiente humanizado, realiza actos por imitación, según sus investigadores, sin que haya sido forzada a ello. Mirar libros, películas, pintar, mirarse en el espejo, hacerse cargo de mascotas… incluso tocar la flauta. Esto último es especialmente importante ya que es capaz de fruncir los labios en la posición adecuada y controlar la respiración. También puede toser a voluntad, lo que requiere un control sobre la laringe. Contrariamente a lo que se pensaba, el control sobre las vías respiratorias y por lo tanto, sobre las futuras capacidades de hablar en nuestros ancestros, pudo haberse dado millones antes de lo que se creía.

Vídeo de Koko tocando flautas y una harmónica (Koko.org):

Otro tema digno de estudio es la capacidad artística de Koko  y Michael. Si otros simios crean herramientas y tienen un lenguaje, ¿será el arte lo que nos diferencia de ellos y nuestros ancestros? Dado que Koko puede comunicarse con un lenguaje común al nuestro y pone nombre a sus creaciones, ¿es esto cierta capacidad simbólica? La línea entre el resto de simios y H. sapiens, y por lo tanto también entre H. sapiens y otros Homo, es cada vez más delgada.

Koko pintando un cuadro. Foto de Koko.org
Koko pintando un cuadro. Foto de Koko.org

HITOS DEL PROYECTO KOKO

Para finalizar, os dejamos con los hitos más importantes tras 40 años de estudio con Koko:

    • Los gorilas pueden aprender la ASL (1.000 signos), lo hacen más rápidamente durante la infancia, y saben modular estos signos para darles distinto énfasis.
    • Entienden el inglés hablado (2.000 palabras)
    • Koko no es un caso único, como Michael y Ndume atestiguan
    • Inventiva: pueden ampliar los signos aprendidos combinando otros signos (por ejemplo: brazalete y dedo para expresar anillo), o añadiendo gestos propios.
    • Emociones: expresan una gran variedad de emociones, desde la más simples a las más complejas. Es conocida la reacción de Koko tras la muerte de uno de sus gatos, la de Robin Williams, o una escena triste en una película.
    • Hipótesis de la empatía: los gorilas quizá tengan empatía, atendiendo a como trata Koko otros animales indefensos o personas.
    • Uso de un lenguaje gramatical
    • Otras maneras de comunicarse: incluyendo creación de dibujos, fotografías, señalando palabras, cartas con frases…
    • Autoidentidad: Koko se define delante de un espejo como “buen animal/persona gorila”. Observa el vídeo:

REFERENCIAS

Mireia Querol Rovira

¿Quiénes son los homínidos?

El artículo de hoy está dedicado a los primates. Conoceremos algunas de sus principales características, como se clasifican las especies actuales y descubriremos quiénes son los homínidos y los homininos.

CARACTERÍSTICAS GENERALES DE LOS PRIMATES

Los primates son un orden de mamíferos placentarios que apareció hace casi 65 millones de años en la selva lluviosa tropical. Actualmente existen más de 400 especies vivas, la mayoría de vida arborícola. Dado que no hay un rasgo único que los defina, son difíciles de clasificar; se deben considerar pues todo un conjunto de características, de las cuales destacan:

  • Sistema visual complejo: con los ojos situados de manera frontal, su visión es estereoscópica, lo que les permite percibir la distancia y profundidad con gran precisión. La mayoría de especies ven en color.
  • Alta movilidad del hombro: facilita el movimiento del brazo en todas direcciones.
  • Manos y pies: tienen cinco dedos y el pulgar oponible (al menos en las manos) lo que les permite coger y manipular objetos con precisión. Aunque algunos tienen garras, la mayoría tienen uñas planas y todos (excepto algunos orangutanes) tienen una uña plana en el dedo gordo del pie.
  • Torso y cola: varios primates reposan y se desplazan con el torso erecto. Excepto los simios, poseen una cola en algunos casos prensil, que utilizan como una quinta extremidad.
  • Tamaño del cerebro: además de algunas especies de ballenas dentadas, los primates superiores tienen, en relación al cuerpo, el cerebro más grande de todos los mamíferos.
  • Organización social: sólo orangutanes, algunos lémures y gálagos son solitarios, el resto de primates se organizan en grupos sociales complejos.

Gorila comiendo (Gorilla sp.) donde se aprecian algunas de las características descritas (Foto: pixabay.com)

Gorila comiendo (Gorilla sp.) donde se aprecian algunas de las características descritas (Foto: pixabay.com)

CLASIFICACIÓN

Hasta hace poco las relaciones entre diferentes grupos de primates no han sido claras, así que habitualmente algunos términos llevan a confusión o se utilizan de manera indistinta de manera popular (monos, simios …). La cladística moderna clasifica los primates en dos subórdenes, los Haplorrinos (primates de nariz seca“) y los Estrepsirrinos (primates de nariz mojada“). Una posible clasificación sería la siguiente:

Taxonomía del orden primates. Credo por Mireia Querol basado en una imagen de humanorigins.si.edu

Tradicionalmente los primates se clasifican en tres grupos: prosimios, monos y simios.

PROSIMIOS

Los prosimios son el grupo más antiguo de primates. Se distribuyen por el sureste asiático e islas marginales de África. Comprenden los lemures, loris, gálagos, potos, indris, el aye-aye y los tarseros. Tienen en común las siguientes características:

  • Garras en lugar de uñas (tienen al menos una uña)
  • Hocico largo con nariz húmeda. Son los primates con mayor sentido del olfato
  • Mayor orientación lateral de los ojos que el resto de primates Éstos son grandes y tienen buena visión nocturna
  • Pabellones auditivos móviles
  • Menor proporción cerebral de los primates

    Aye-aye (Daubentonia madagascariensis). (Foto: Frans Lanting)
    Aye-aye (Daubentonia madagascariensis). (Foto: Frans Lanting)

Tarsero de Filipinas (Foto: Kok Leng Yeo)
Tarsero de Filipinas (Carlito syrichta). (Foto: Kok Leng Yeo)

MONOS DEL NUEVO Y VIEJO MUNDO

Los monos del Nuevo Mundo se distribuyen por América Central y del Sur. Tienen la cola larga, frecuentemente prensil. El hocico es plano y las narinas laterales. Son totalmente arborícolas. Los representantes más conocidos son los titís, el mono araña, los capuchinos, y los sakí.

Sakí cariblanco macho (Pithecia pithecia). (Foto: Charles Miller).
Sakí cariblanco macho (Pithecia pithecia). (Foto: Charles Miller).

Los monos del Viejo Mundo se distribuyen por África y Asia. Suelen tener un tamaño superior a los del Nuevo Mundo. Las narinas están orientadas hacia abajo o hacia delante y comprenden una gran diversidad de especies, como los macacos, papiones, mandriles, mangabeis, driles, colobos, narigudos, langures

Langur dorado (Trachypithecus geei). (Foto: Wikimedia).
Langur dorado (Trachypithecus geei). (Foto: Wikimedia).

SIMIOS

Los simios se dividen en dos familias: los hilobátidos (gibones y siamangs) y los homínidos (orangutanes, gorilas, chimpancés y humanos). Se distribuyen por África occidental y central y por el sur y sureste aisático, con excepción de los humanos, que nos distribuimos por todo el planeta y hábitats. Los simios tenemos la cara plana, con las narinas hacia abajo y una anatomía que facilita la postura erecta y la manipulación precisa de materiales, que incluye el uso y creación de herramientas en algunas especies.

Bonobo (Pan paniscus). (Foto: Pierre Fidenci)
Bonobo (Pan paniscus). (Foto: Pierre Fidenci)

En conclusión, los homínidos somos los seres humanos (Homo sapiens) conjuntamente con orangutanes (dos especies: Pongo pymaeus y Pongo abelii), chimpancés (Pan troglodytes), bonobos (Pan paniscusy gorilas (dos especies: Gorilla gorilla y Gorilla beringei), ya que todos pertenecemos a la familia Hominidae. El término homínido también se refiere a todas las especies fósiles de este familia, y por lo tanto, a nuestros antepasados, que trataremos en futuros artículos sobre evolución humana. A pesar de esto, actualmente para referirnos exclusivamente a las especies  de nuestra rama evolutiva (H. sapiens incluido) se utiliza el término homininos, que hace referencia a una tribu (Hominini) de la familia Hominidae.

REFERENCIAS

Si te ha gustado este artículo, por favor compártelo en las redes sociales para hacer difusión, pues el objetivo del blog, al fin y al cabo, es divulgar la ciencia y que llegue al máximo de gente posible .

 Esta publicación está bajo una licencia Creative Commons:
Llicència Creative Commons

Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

Mercurio en delfines listados (Stenella coeruleoalba) del Mediterráneo (II): efectos y detoxificación

Aquí tenéis la segunda parte y última en la que trato el tema del mercurio en delfines listados del Mediterráneo. Si en la primera parte hablé sobre el origen y los niveles de mercurio, en esta ocasión nos centramos en los efectos y su detoxificación. Espero que sea de vuestro interés!

 

ORIGEN Y NIVELES DE MERCURIO EN DELFINES LISTADOS DEL MEDITERRÁNEO (RESUMEN)

El mercurio del Mediterráneo tiene un origen principalmente natural, debido a la presencia de depósitos de cinabrio (HgS) a lo largo de la cuenca mediterránea, especialmente en Italia. Es por este motivo que los delfines del Mediterráneo tienen uno de los niveles más elevados del mundo, teniendo la máxima concentración en el hígado, seguido del pulmón, el riñón y los músculos.

DSCN1453

 

EFECTOS DEL MERCURIO EN LOS DELFINES

El mercurio presenta múltiples formas intercambiables en la biosfera, pero la bioamulación a lo largo de la red trófica se produce gracias al metilmercurio (MeHg), una forma orgánica con una alta afinidad por los lípidos (grasas). Las formas inorgánicas son menos tóxicas que las orgánicas. Así pues, la concentración de metilmercurio, más que la concentración total de mercurio, es el mejor indicador de los posibles efectos tóxicos. De todas formas, el metilmercurio representa menos del 10% del mercurio total del hígado en adultos (Cardellicchio et al. 2000, Krishna et al. 2003), aunque en los individuos lactantes representa aproximadamente un 50% (Cardellicchio et al. 2002b) y en jóvenes es entre el 13-35% (Cardellicchio et al. 2002b).Aunque no se puede relacionar directamente la muerte de los delfines encontrados en las costas mediterráneas con el mercurio, es razonable pensar que éste, en sinergia con otros contaminantes, podría causar trastornos en la fisiología de los animales (Cardellicchio et al. 2002a). A grandes rasgos, el mercurio causa desórdenes serios en tejidos como el hígado, el riñón y el cerebro (Augier et al. 1993)Los daños primarios causados por el mercurio se producen en el sistema nervioso central, incluyendo déficit motor y sensitivo y deficiencia de comportamiento. Se ha observado que el límite de tolerancia de mercurio en el hígado de mamíferos es de 100 – 400 μg/g en peso húmedo (Frodello et al. 2000, Cardellicchio et al 2000, Cardellicchio et al. 2002b). En delfines mulares (Tursiops truncatus) del Atlántico se han asociado anormalidades del hígado con la acumulación crónica de mercurio (Krishna et al. 2003). En concreto, se ha observado la acumulación de lipofucsina (pigmento marrón) en las áreas portales del hígado, derivado del daño en células causado por la inhibición que causa el metal en las enzimas digestivas lisosomáticas, lo que habría reducido la degradación de proteínas y, así, causando la acumulación del pigmento y la muerte de las células. Si eso fuera cierto también para los delfines listados, las poblaciones mediterráneas de esta especie están en grave riesgo.
También se observan anorexia, letargo, trastornos reproductores y alteraciones y muerte de fetos. A la vez, el mercurio produce una disminución de las defensas, facilitando la aparición de enfermedades infecciosas y neumónia.

 

DETOXIFICACIÓN DEL MERCURIO

A pesar de los elevados valores hallados en delfín listado, los animales no presentan signos evidentes de intoxicación por mercurio. Como los delfines tienen muy poca capacidad para eliminar el mercurio, se han desarrollado diferentes mecanismos de detoxificación de este metal, de manera que se generan formas menos tóxicas que las originales (André et al. 1990, Leonzio et al. 1992, Augier et al. 1993, Monaci et al. 1998, Cardellicchio et al. 2000, Cardellicchio et al. 2002b, Krishna et al. 2003, Roditi-Elasar et al. 2003, Pompe-Gotal et al. 2009).

La detoxificación de mercurio la realizan principalmente el hígado (detoxificación y almacenaje) y el riñón (eliminación), a pesar de que el pulmón podría tener algún papel también en la detoxificación (Augier et al. 1993).

La vida media de eliminación del metilmercurio en delfines listados es de 1000 días (Itano i Kawai 1981). Se han identificado dos mecanismos de detoxificación de metilmercurio principales: la asociación a selenio y a metalotioneínas (Augier et al. 1993).

 

Asociación a selenio

Se ha identificado el efecto antagónico que tienen el mercurio y el selenio a lo largo de todo el reino animal, incluyendo los delfines (Leonzio et al. 1992, Monaci et al. 1998, Frodello et al. 2000, Cardellicchio et al. 2000, Cardellicchio et al. 2002b, Krishna et al. 2003, Roditi-Elasar et al. 2003, Pompe-Gotal et al. 2009).Se han observado gránulos esféricos y poligonales de selenuro de mercurio (también llamado tiemannita) a nivel intracelular, situados sobretodo en los macrófagos del hígado, las células de Kupfer y en los túbulos proximales del riñón, pero también en el sistema respiratorio, los pulmones y los nodos limfáticos hilares en delfines listados (Cardellicchio et al. 2002b, Krishna et al. 2003). El mercurio ingerido con el alimento se transporta hasta el hígado a través de las venas portales donde se convierte en selenuro de mercurio y se acumula (Krishna et al. 2003), lo que explica los elevados niveles de mercurio total del hígado de los delfines listados del Mediterráneo.

Palmisano et al. (1995) han propuesto dos fases en el mecanismo de desmetilación y acumulación: a niveles bajos de mercurio, el metal se retiene sobretodo en la forma metilada, mientras que a niveles altos (probablemente por encima del lindar de 100 μg/g en peso fresco de mercurio total) se produce la desmetilación. De hecho, la relación molar Hg:Se en el hígado de delfines listados es aproximadamente 1 una vez superado este nivel lindar (Krishna et al. 2003), mientras que toma valores inferiores a 1 en el resto de tejidos como el músculo (Leonzio et al. 1992).

Parece ser que la acción protectora del selenio contra el mercurio disminuye en la parte final de la vida de les delfines (Leonzio et al. 1992).

 

Asociación a metalotioneínas

La detoxificación del mercurio en delfines también se realiza por la compexación a metalotioneínas (MT), proteínas ricas en cisteína capaces de unirse a metales pesados a través de grupos tiol de sus residuos de cisteína (André et al. 1990, Caurant et al. 1996; Cardellicchio et al. 2002b). Aunque no es el mecanismo principal, se observa un máximo de un 10% del mercurio intracelular de los hepatócitos asociado a estas proteínas en ratas (Gerson i Shaikh 1982).

 

CONCLUSIONES

  • La concentración de mercurio varía substancialmente según el tejido y órgano que se consideren, pero sigue el siguiente patrón general: hígado >> pulmón, riñón > músculo. En la piel, melón, blubber y cerebro, toma valores insignificantes.
  • Los niveles del Mediterráneo son más altos que en el Atlántico y Pacífico y toma los valores máximos en la costa francesa, el mar de Liguia y el mar Tirreno.
  • La concentración de mercurio está relacionada con la edad y la longitud, pero no con el sexo.
  • A pesar de que los niveles de mercurio en los delfines listados del Mediterráneo son muy elevados no presentan efectos tóxicos gracias a la detoxificación del metal con selenio y metalotioneínas.

 

REFERENCIAS

  • Andre J, Boudou A, Ribeyre F i Bernhard M (1990). Comparative study of mercury accumulation in dolphins (Stenella coeruleoalba) from French Atlantic and Mediterranean coasts. The Science of the Total Environment 104:191-209
  • Augier H, Park WK i Ronneau C (1993). Mercury Contamination of the Striped Dolphin Stenella coeruleoalba Meyen from the French Mediterranean Coast. Marine Pollution Bulletin 26:306-311
  • Cardellicchio N, Decataldo A, Di Leo A i Giandomenico S (2002a). Trace elements in organs and tissues of striped dolphins (Stenella coeruleoalba) from the Mediterranean sea (Southern Italy). Chemosphere 49:85-90
  • Cardellicchio N, Decataldo A, Di Leo A i Misino A (2002b). Accumulation and tissue distribution of mercury and selenium in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea (southern Italy). Environmental Pollution 116:265-271
  • Cardellicchio N, Giandomenico S, Ragone P i Di Leo A (2000).Tissue distribution of metals in striped dolphin (Stenella coeruleoalba) from the Apulian coast, Southern Italy. Marine Environmental Research 49:55-66
  • Frodello JP, Roméo M i Viale D (2000). Distribution of mercury in the organs and tissues of five toothed whale species of the Mediterranean. Environmental Pollution 108:447-452
  • Gerson JR i Shaikh ZA (1982). Uptake and binding of cadmium and mercury to metallothionein in rat hepatocyto primary cultures. Biochemistry Journal 208:465-472
  • Itano K i Kawai S (1981). Changes of mercury contents and biological half-life of mercury in the striped dolphin. In: Fujiyama H (Ed.) Studies on the Levels of Oganochlorine Compounds and Heavy Metals in Marine Organisms. University of Ryukyus, 49-73
  • Krishna D, Virginie D, Stéphane P i Jean-Marie B (2003). Heavy metals in marine mammals. In: Vos JV, Bossart GD, Fournier M i O’Shea T (Eds.) Toxicology of Marine Mammals. Taylor and Francis Publishers, Washington DC, 135-167
  • Leonzio C, Focardi S i Fossi C (1992). Heavy metals and selenium in stranded dolphins of the Northern Tyrrhenian (NW Mediterranean). The Science of the Total Environment 119:77-84
  • Monaci F, Borrl A, Leonzio C, Marsili L i Calzada N (1998). Trace elements in striped dolphin (Stenella coeruleoalba) from the western Mediterranean. Envirnmental Pollution 99:61-68
  • Palmisano F, Cardellicchio N i Zambonin PG (1995). Speciation of mercury in dolphin liver: a two-stage mechanism for the demethylation accumulation process and role of selenium. Marine Environment Research 40(2):109-121
  • Pompe-Gotal J, Srebocan E, Gomercic H i Prevendar Crnic A (2009). Mercury concentrations in the tissues of bottlenose dolphins (Tursiops truncatus) and striped dolphins (Stenella coeruleoalba) stranded on the Croatian Adriatic coas. Veterinarni Medicina, 54(12):598-604
  • Roditi-Elasar M, Kerem D, Hornung H, Kress N, Shoham-Frider E, Goffman O i Spanier E (2003). Heavy metal levels in bottlenose and striped dolphins off the Mediterranean coast of Israel. Marine Pollution Bulletin 46: 504-512

 

Licencia Creative Commons
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

Mercurio en delfines listados (Stenella coeruleoalba) del Mediterráneo (I): origen y niveles

Después de semanas sin poder escribir una entrada elaborada sobre un tema de cetáceos, os dejo aquí ésta bastante extensa sobre el mercurio en los delfines listados del Mediterráneo. En concreto, trata sobre el origen y los niveles de mercurio en esta especie. En una segunda entrada se hablará del efecto tóxico y la detoxificación de este metal en esta especie. Espero que sea de vuestro interés.  

 

INTRODUCCIÓN

El delfín listado (Stenella coeruleoalba) es un delfínido pelágico pequeño común en aguas temperadas y tropicales de todo el mundo. La longitud mediana de los individuos del Pacífico oeste es de 2,4 metros en machos y de 2,2 m en hembras (Archer y Perrin, 1999), aunque los especímenes del Mediterráneo miden un 10% menos que éstos (Andre et al. 1991). Su dieta se compone principalmente de peces y calamares pelágicos y bentopelágicos (Archer 2009).

149919_10204194897822686_5338956519483056090_n

Su rango de distribución es amplio (Archer 2009): se encuentra en el Pacífico Norte y Tropical; en el Atlántico, del norte de Sudamérica hasta a Norteamérica y en el Atlántico Noreste en aguas del Reino Unido; en el Índico; y en el Mediterráneo, donde es la especie más abundante. La figura siguiente muestra su rango de distribución en el Mediterráneo:

dist

Su estado de conservación a nivel global es de preocupación menor, pero en el Mediterráneo es vulnerable debido a la interacción accidental o no con la pesca (de palangre principalmente, Aguilar 2000), la contaminación y el cambio climático (Otero y Conigliaro 2012).

 

ORIGEN DEL MERCURIO DEL MEDITERRÁNEO

La fuente principal de las elevadas concentraciones de mercurio observadas en los organismos del Mediterráneo son depósitos naturales de mercurio de origen volcánico en muchas regiones de su cuenca, en forma de cinabrio (HgS) (André et al. 1991, Augier et al. 1993, Cardellicchio et al. 2000, Cardellichio et al. 2002b). Además, el uso del mercurio en actividades industriales podría contribuir a aumentar los niveles de mercurio en el mar (Cardellicchio et al. 2002b), aunque su efecto en delfines listados no parece que pueda ser importante por el hecho de ser una especie pelágica y raramente los encontramos cerca de la costa (a 10 km de la fuente, el mercurio vuelve a niveles de fondo, Andre et al. 1991).

 

NIVELES DE MERCURIO EN DELFINES LISTADOS DEL MEDITERRÁNEO

Distribución en los diferentes tejidos

La Tabla 1siguiente muestra la concentración media, la desviación y/o el rango de mercurio total (μg/g peso seco) en el hígado, riñón y músculo de delfines listados en varias localidades del Mediterráneo. Se han seleccionado estos tres órganos para hacer la comparativa porque son los que más se estudian en la bibliografía. De todos modos, hay que tener presente que la comparación de resultados de diferentes estudios se tiene que hacer con cuidado puesto que hay múltiples fuentes de variación como la condición, la edad y el sexo de los individuos, pero también con los métodos de toma de muestras y de medida. A pesar de que en esta tabla sólo constan tres órganos, el análisis siguiente se ha centrado en todos los órganos que han estudiado los diferentes autores mencionados.

  Hígado Riñón Músculo
  Mediana SD (rango) Mediana SD (rango) Mediana SD (rango)
Francia (Andre et al. 1991) 1472 131(4,4-392) 104 153(6,3-806) 63 131(4,5-365)
Francia (Augier et al. 1993) 481 587(68-2271) 62 88(14-341 37 40(7,4-155)
Costa de Apulia (Italia)(Cardellicchio et al. 2002b) 851 128(703-975) 46 9,7(34-59) 49 11(37-65)
Córcega (Frodello et al. 2000) 460 58 49 4 21 2
Tirreno Norte (Leonzio et al. 1992) 324 (13-4400) 65 (5,8-204) 37 (6,5-168)
Italia Oeste (Monaci et al. 1998) 593 1120 44 72 53 65
España (Monaci et al. 1998) 1043 835 63 100 28 73
Israel (Roditi-Elasar et al. 2003) 603 900(6,3-2475) 45 50(8,6-122) 40 32(2,0-95)

Tabla 1. Concentración de mercurio total (en μg/g peso seco) en el hígado, riñón y músculo de delfines listados (Stenella coeruleoalba) de varias localidades del Mediterráneo.

Como puede observarse en la Tabla 1, los niveles de mercurio en delfines listados del Mediterráneo son muy elevados, presentando la máxima concentración de mercurio en el hígado (Andre et al. 1991, Augier et al. 1993, Cardellicchio et al. 2002b, Frodello et al. 2000, Leonzio et al. 1992, Monaci et al. 1998, Pompe-Gotal et al. 2009, Roditi-Elasar et al. 2003). En otros mamíferos marinos, el hígado también es el órgano más contaminado (André et al. 1991, Augier et al. 1993). El segundo y tercer órganos con una concentración más elevada son el riñón y el músculo respectivamente. En los casos en que se ha estudiado la concentración de mercurio total en el pulmón (Augier et al. 1992, Cardellicchio et al. 2002b, Frodello et al. 2000), éste se ha situado como segundo órgano con la concentración más alta. De este modo, se puede deducir el siguiente orden en cuanto a la concentración de mercurio total en delfín listado por los cuatro órganos: hígado >> pulmón > riñón > músculo. Se han encontrado niveles insignificantes de mercurio en la piel, el melón, el blubber y el cerebro (Andre et al. 1991, Augier et al. 1993, Leonzio et al. 1992, Cardellicchio et al. 2002b, Frodello et al. 2000).

Este patrón en las concentraciones de mercurio se puede explicar por las vías de entrada y eliminación del metal en delfines. La elevada concentración en el hígado de los delfines listados del Mediterráneo se debe a que, una vez ingerido el mercurio a través del alimento (que es la vía de entrada principal en el organismo, Augier et al. 1993) o por ingestión de agua (Augier et al. 1993, Frodello et al. 2000), se transporta hasta el hígado y allí se detoxifica y se acumula  (Frodello et al. 2000, Krishna et al. 2003). La elevada concentración en los pulmones se puede explicar por su inhalación de la atmósfera (Cardellicchio et al. 2002b). El riñón, que almacena una fracción importante del metal, está involucrado en su eliminación, lo que explica que se encuentren valores intermedios. Finalmente, la concentración en el músculo se explica por el hecho de ser un tejido donde también se almacena, pero al representar un volumen tan grande, su presencia queda diluida, lo que explica que los niveles sean relativamente bajos.

 

Efecto de la localización geográfica

Los delfines listados del Mediterráneo presentan niveles de mercurio más elevados que los del Atlántico y Pacífico (André et al. 1991, Leonzio et al. 1992, Augier et al. 1993, Monaci et al. 1998, Frodello et al. 2000, Cardellicchio et al. 2002b, Krishna et al. 2003, Roditi-Elasar et al. 2003, Pompe-Gotal et al. 2009). A pesar de que las concentraciones de mercurio encontradas en delfines listados a lo largo de todo el Mediterráneo toman valores similares, los niveles más elevados se encuentran en la costa francesa, el mar de Liguria y el mar Tirreno, seguido por la costa adriática de Croacia (Andre et al. 1991, Augier et al. 1993, Cardellicchio et al. 2000, Cardellicchio et al. 2002b, Pompe-Gotal et al. 2009). La explicación más plausible es la proximidad a los depósitos de cinabrio de Italia central (Monaci et al. 1998, Cardellicchio et al. 2000, Cardellicchio et al. 2002b).

 

Efecto de la edad y el sexo

El mercurio tiende a acumularse con la edad en organismos marinos  (André et al. 1991, Monaci et al. 1998, Roditi-Elasar et al. 2003), de forma que su tasa de crecimiento influye el patrón de acumulación en las especies, lo que significa que también aumenta con la longitud. El patrón de incremento con la longitud se puede explicar muy bien en el músculo (Buffoni et al. 1982, Bernhard 1985): en los jóvenes, al crecer rápido (de 1 m a 1,5 m en 6  meses), la concentración aumenta poco por efecto dilución; cuando el crecimiento decrece, la concentración aumenta y cuando se para a los 2 m (12 años) se acumula en un volumen constante y aumenta mucho más rápidamente.

Por otro lado, no se observa una influencia significativa del sexo en la concentración de mercurio total en los diferentes órganos (Monaci et al. 1998, Cardellicchio et al. 2002b).

 

REFERENCIAS

  • Aguilar A (2000). Population biology, conservation threats and status of Mediterranean striped dolphins (Stenella coeruleoalba). J. Cetacean Res. Manage. 2:17-26
  • Andre J, Boudou A, Ribeyre F i Bernhard M (1991). Comparative study of mercury accumulation in dolphins (Stenella coeruleoalba) from French Atlantic and Mediterranean coasts. The Science of the Total Environment 104:191-209
  • Archer FI i Perrin WF (1999). Stenella coeruleoalba. Mammal. Species 603:1-9
  • Archer FI. Striped Dolphin (Stenella coeruleoalba). Encyclopedia of Marine Mammals. Perrin W, Würsig B i Thewissen JGM. 2ª edició. 1127-1129
  • Augier H, Park WK i Ronneau C (1993). Mercury Contamination of the Striped Dolphin Stenella coeruleoalba Meyen from the French Mediterranean Coast. Marine Pollution Bulletin 26:306-311
  • Bernhard M (1985). Mercury accumulation in a pelagic foodchain. In: Martell AE i Irgolic KJ (Eds), Environmental Inorganic Chemistry. VCH Publishers, Deerfield Beach, Florida, 349-358
  • Buffoni G, Bernhard M i Renzoni A (1982) Mercury in Mediterranean tuna. Why is their level higher than Atlantic tuna? A model. Thalassia Jugosl. 18:231-243
  • Cardellicchio N, Decataldo A, Di Leo A i Misino A (2002b). Accumulation and tissue distribution of mercury and selenium in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea (southern Italy). Environmental Pollution 116:265-271
  • Cardellicchio N, Giandomenico S, Ragone P i Di Leo A (2000).Tissue distribution of metals in striped dolphin (Stenella coeruleoalba) from the Apulian coast, Southern Italy. Marine Environmental Research 49:55-66
  • Frodello JP, Roméo M i Viale D (2000). Distribution of mercury in the organs and tissues of five toothed whale species of the Mediterranean. Environmental Pollution 108:447-452
  • Krishna D, Virginie D, Stéphane P i Jean-Marie B (2003). Heavy metals in marine mammals. In: Vos JV, Bossart GD, Fournier M i O’Shea T (Eds.) Toxicology of Marine Mammals. Taylor and Francis Publishers, Washington DC, 135-167
  • Leonzio C, Focardi S i Fossi C (1992). Heavy metals and selenium in stranded dolphins of the Northern Tyrrhenian (NW Mediterranean). The Science of the Total Environment 119:77-84
  • Monaci F, Borrl A, Leonzio C, Marsili L i Calzada N (1998). Trace elements in striped dolphin (Stenella coeruleoalba) from the western Mediterranean. Envirnmental Pollution 99:61-68
  • Otero MM i Conigliaro M (2012). Marine mammals and sea turtles of the Mediterranean and Black Seas. IUCN, 14
  • Pompe-Gotal J, Srebocan E, Gomercic H i Prevendar Crnic A (2009). Mercury concentrations in the tissues of bottlenose dolphins (Tursiops truncatus) and striped dolphins (Stenella coeruleoalba) stranded on the Croatian Adriatic coas. Veterinarni Medicina, 54(12):598-604
  • Roditi-Elasar M, Kerem D, Hornung H, Kress N, Shoham-Frider E, Goffman O i Spanier E (2003). Heavy metal levels in bottlenose and striped dolphins off the Mediterranean coast of Israel. Marine Pollution Bulletin 46: 504-512

 

Licencia Creative Commons
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.