Arxiu d'etiquetes: Artròpodes

Micro-okupes a casa

Segurament has pensat algun cop “Que bé s’està sol a casa”. Doncs, si es així, ens sap greu dir-te que t’estaves equivocant. A casa existeixen una gran quantitat de micro-ecosistemes perfectes per la proliferació d’una gran diversitat de microorganismes. Aquestes comunitats són les responsables de les olors, degradació de certs materials i contaminació. Vols conèixer una mica més els teus microcompanys de pis? Endavant. 

MICRO-OKUPES A LES NOSTRES LLARS

Passem un 90% del nostre temps a llocs tancats, com per exemple oficines, cases, escoles, etc. Aquests llocs, així com la resta del planeta, presenta unes condiciones adequades per la proliferació de diverses espècies microscòpiques com ara bacteris, fongs i determinades espècies d’artròpodes. Aquestes comunitats formen el que coneixem com microbioma de les nostres llars.

3-cepillo-dientes
Microfotografia d’escàner electrònic d’un bri d’un raspall de dents utilitzat on s’acumulen les comunitats bacterianes. (Imatge: Science photo library)

Les diferents relacions que podem establir amb aquestes comunitats poden condicionar directament a la nostra salut. Dins les nostres llars podem trobar microorganismes beneficiosos, microorganismes indiferents (és a dir, que no ens produeixen cap efecte) i microorganismes patògens (com Staphylococcus aureus resistent a antibiòtic) o al·lergogens, com per exemple els àcars. Tranquils! Cal destacar que aquests patògens no presenten un percentatge important i per tant, no suposen cap risc per la nostra salut.

BACTERIS

Aquests són els  microorganismes més abundants que podem trobar a casa. Es troben repartits per tots els racons imaginables i presenten una gran diversitat genètica. Per exemple, a la pols es calcula que hi pot haver fins a 7000 espècies de bacteris diferents. Al següent gràfic, ens presenten una llarga llista de taxons bacterians que colonitzen cada racó de casa, com per exemple la tapa del vàter, la cuina o els nostres llits.

fig_1a
Diferents taxons bacterians que trobem en llocs variats de les nostres cases. (Imatge: G.E. Flores)

FONGS

Es calcula que a una casa normal es poden trobar fins a 2000 tipus diferents de fongs. També es troben repartits arreu de la casa com per exemple al menjar, cuina, parets o llocs oblidats per la neteja com la pols acumulada sobre les portes. Entre aquesta gran quantitat de fongs podem destacar la presència d’ Aspergillus, Penicillium i Fusarium (fongs molt comuns a l’ambient). També podem trobar espècies com Stereum, Tremetes o Phlebia (fongs encarregats de la degradació de la fusta) o fongs relacionats amb els humans, com seria el cas de Candida.

fig_6
Floridura de les parets de la casa per Strachybrotrys sp. (Imagen: Mycleaningproduct.com) o a les fruites com per exemple Penicillium sp. (imagen: wisegeek).

ÀCARS

Aquests organismes representen al grup d’artròpodes microscòpics més abundants de les nostres llars. Normalment habiten a la pols, a les superfícies rugoses com teles, matalassos i coixins on s’alimenten de pell morta d’humans i animals. Normalment trobem les espècies Dermatophagoides pteronyssus i Dermatophagoides farinae (coneguts vulgarment com àcars de la pols). Tot i això, també podem trobar en menor quantitat l’espècie Demodex folliculorum. Aquest àcar habita als fol·licles pilosos de la nostra cara i s’alimenta de pell morta. Normalment es desprenen de la pell mentre dormim.

fig_7
Àcar de la pols D. pteronyssinus (imatge: Göran Malmberg) i àcar dels fol·licles pilosos Demodex folliculorum (Imagen: BBC)

BIOGEOGRAFIA I PRINCIPALS FONTS D’EMISSIÓ

La distribució geogràfica de les comunitats microscòpiques de casa i els factors ambientals que la condicionen són poc coneguts. Per aquest motiu, al llarg d’aquests darrers anys els estudis sobre el microbioma de les nostres llars han augmentat significativament.

Aquesta gran diversitat microbiana canvia en funció de la localització, és a dir, no trobarem els mateixos microorganismes al llit que al vàter. Per exemple, a la nostra cuina podem trobar diferents bacteris depenent del lloc que analitzem. A la imatge inferior, ens mostren com al foc de la cuina trobem una major quantitat de Salmonella sp. que Clostridium sp.

fig_3
Diferència de distribució geogràfica en funció de l’espècie bacteriana analitzada (Imatge: G.E. Flores)

Tot i això, trobem una certa tendència en aquesta distribució geogràfica, és a dir, els microorganismes que habiten en certes zones són semblants a les que trobem a altres ones relacionades. Al dendrograma següent se’ns explica de manera gràfica aquest darrer punt. Per exemple, podem veure com als coixins (pillowcase en anglès) trobem microorganismes molt semblants a les que trobem al vàter (contacte amb la pell humana) mentre que són totalment diferents de les que trobem a la fusta de tallar de les nostres cuines.

fig_1
Dendrograma de similitut entre les comunitats bacterianes que trobem a les nostres cases. (Imatge: Robert, D. Dunn).

Però, per què existeix aquesta distribució geogràfica?

Les diferents fonts d’emissió de microorganismes són les causants d’aquesta variació geogràfica. En funció d’aquesta font trobarem a un determinat lloc unes espècies o unes altres. Òbviament la font més gran d’emissió de microorganismes són els éssers humans. Com bé sabem, al nostre cos portem milions i milions de bacteris i altres microorganismes que s’escampen per l’ambient (ja sigui per la nostra activitat respiratòria, per contacte directe o descamació de la pell). Cada humà deixa una petjada microbiana (fingerprint en anglès) específica a aquells llocs on es troba.

fig_3b
Principals fonts d’emissió batceriania de les nostres llars. Com podem veure, la font més gran d’emissió són els pròpis humans (Imatge: G. E. Flores)

Podem observar que en certs llocs es troben microorganismes relacionats amb els nostres excrements. Si no rentem les nostres mans després d’anar al bany, segurament anem escampant bacteris fecals per tot arreu. No només és cosa dels bruts això, ja que tots escampem aquests bacteris de forma inconscient. Per exemple, si estirem la cadena del vàter amb la tapa oberta, es produeix una expansió en aerosol de bacteris fecals de fins a dos metres de distància, això implica que arriben al nostre raspall de dents o al sabó de mans.

Per altra banda, la diversitat microbiana està molt condicionada pel nombre i tipus d’ocupants de la casa, és a dir, no hi haurà les mateixes espècies  a una casa amb dos ocupants que a la casa d’una família de set persones. A més, s’ha observat que no trobem els mateixos microorganismes a cases on hi ha una major proporció de dones que a les que hi ha major proporció d’homes. Generalment, els homes alliberen una major quantitat de  microorganismes a l’ambient. 

f5a
Gràfic de la influència del gènere dels ocupants a la diversitat microbiana de les cases. (Imatge: Albert Barberán).

Un altre factor molt important que condiciona aquesta diversitat microbiana és la presència d’animals a casa. Si tenim gossos o gats, segurament conviurem amb comunitats totalment diferents de les que trobem en cases sense animals. En aquests casos, trobem normalment microorganismes relacionats amb els excrements, pell i saliva dels nostres animals.

f5-large
Diferències d’abundància de determinades espècies bacterianes per la presència d’animals domèstics (Imatge: Albert barberán).

Tot i que les principals fonts d’emissió són els ocupants d’aquestes cases, el microbioma de les nostres llars està relacionat estretament amb les espècies microbianes que trobem a l’exterior. En el cas dels fongs aquesta relació és més pronunciada que en el cas dels bacteris. Cal destacar, però, que hi ha una major quantitat d’espècies diferents de dins les nostres llars que a l’exterior.

fig_4
Comparació de la riquesa microbiana entre l’interior i exterior de les nostres llars. (Imagen: Albert barberán)

·

Ja ho diven “com a casa no s’està enlloc”. Efectivament, cada casa és un univers únic i específic de comunitats microscòpiques. No n’hi ha dos iguals! 

REFERÈNCIES

Maribel-català

 

Tardígrads: Animals amb superpoders

Els óssos més petits del món tenen capacitats dignes de superherois. En realitat, no són óssos pròpiament dits: els óssos d’aigua en realitat són els tardígrads. Són animals invertebrats pràcticament indestructibles: sobreviuen dècades sense aigua ni aliment, a temperatures extremes i fins i tot han sobreviscut a l’espai exterior. Coneix l’animal que sembla arribat d’un altre planeta i aprèn a observar-lo a casa teva si disposes d’un microscopi.

QUÈ ES UN TARDÍGRAD?

Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Ós d’aigua (Macrobiotus sapiens) a sobre de molsa. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM): Foto de Nicole Ottawa & Oliver Meckes

Els tardígrads o óssos d’aigua, són un grup d’invertebrats de 0,05-1,5 mm que viuen preferiblement en llocs humits. Són especialment abundants en la pel·lícula d’humitat que recobreix molses i falgueres, encara que no falten espècies oceàniques i d’aigua dolça, per la qual cosa podem considerar que viuen arreu del món. Fins i tot a escassos metres de tu, entre rajola i rajola. En un gram de molsa s’han arribat a trobar fins a 22.000 exemplars. S’han trobat a l’Antàrtida a sota de capes de 5 metres de gel, en deserts càlids, en fonts termals, en muntanyes de 6.000 metres d’altura i a profunditats oceàniques abissals. Es tracta doncs d’animals extremòfils. Es calcula que existeixen més de 1.000 espècies.

MORFOLOGIA

El seu nom popular fa referència al seu aspecte i el científic a la lentitud dels seus moviments. Tenen el cos dividit en 5 segments: el cefàlic, on tenen la boca en forma de trompa (probòscide) amb dos estilets interns i en ocasions ulls simples (ommatidis) i pèls sensorials, i els 4 restants amb un parell de potes per segment. Cada pota té urpes per ancorar-se al terreny.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Vista ventral d’un tardígrad on s’observen els cinc segments del cos. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardígrad (Echiniscus sp.) en el que es poden observar les urpes. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Observa en aquest vídeo de Craig Smith els moviments dels tardígrads amb més detall:

ALIMENTACIÓ

Gràcies als estilets de la seva boca, perforen els vegetals dels quals s’alimenten i succionen els productes de la fotosíntesi, però també es poden alimentar absorbint el contingut cel·lular d’altres organismes microscòpics com bacteris, algues, rotífers, nematodes… Alguns són depredadors i poden ingerir microorganismes sencers.

El seu aparell digestiu és bàsicament la boca i una faringe amb potents músculs per fer els moviments de succió que s’obre directament a l’intestí i l’anus. Algunes espècies només defequen quan muden.

Detalle de la boca de un tardígrado. Foto de
Detall de la boca d’un tardígrao. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

ANATOMIA INTERNA

No posseeixen aparell circulatori ni respiratori: l’intercanvi de gasos es fa directament per la superfície del cos. Estan coberts per una cutícula rígida que pot ser de diferents colors i que van mudant a mesura que creixen. Amb cada muda, perden els estilets bucals, que seran segregats de nou. Són organismes eutèlics: per créixer només augmenten la mida de les seves cèl·lules, no el seu número, que roman constant al llarg de la seva vida

REPRODUCCIÓ

Els tardígrads en general tenen sexes separats (són dioics) i es reprodueixen per ous (són ovípars), però també hi ha espècies hermafrodites i partenogénenètiques (les femelles es reprodueixen sense ser fecundades per cap mascle). La fecundació és externa i el seu desenvolupament és directe, és a dir, no presenten fases larvàries.

tardigrade egg, ou tardigrad
Ou de tardígrad. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

ELS RÈCORDS DELS TARDÍGRADS

Els tardígrads són animals increïblement resistents que han superat les següents condicions:

  • Deshidratació: poden sobreviure durant 30 anys en condicions de laboratori sense una sola gota d’aigua. Hi ha fonts que asseguren que resisteixen fins a 120 anys o que s’han trobat en gels de 2000 anys d’antiguitat i han pogut reviure, tot i que probablement siguin exageracions.
  • Temperatures extremes: si bulls 1 tardígrad, sobreviu. Si el sotmets a temperatures de gairebé el zero absolut (-273ºC), sobreviu. El seu rang de supervivència va de -270ºC a 150ºC.
  • Pressió extrema: són capaços de suportar des del buit fins a 6.000 atmosferes, és a dir, 6 vegades la pressió que hi ha al punt més profund de la Terra, la Fossa de les Marianes (11.000 metres de profunditat).
  • Radiació extrema: els tardígrads poden suportar bombardejos de radiació en una dosi 1000 vegades superior a la letal per un humà.
  • Substàncies tòxiques: si se’ls submergeix en èter o alcohol pur, sobreviuen.
  • Espai exterior: els tardígrads són els únics animals que han sobreviscut a l’espai exterior sense cap protecció. El 2007 l’ESA (Agència Espacial Europea), dins del projecte TARDIS (Tardigrades In Space) va exposar tardígrads (Richtersius coronifer i Milnesium tardigradum) durant 12 dies a la superfície de la nau Foton-M3 i van sobreviure al viatge espacial. El 2011 la NASA va fer el mateix col·locant-los a l’exterior del transbordador espacial Endeavour i es van corroborar els resultats. Van sobreviure al buit, als rajos còsmics i a una radiació ultraviolada 1000 vegades superior a la de la superfície terrestre. El projecte Biokis (2011) de l’Agència Espacial Italiana (ASI) va estudiar l’impacte d’aquests viatges a nivell molecular.

COM HO FAN?

Els tardígrads són capaços de resistir aquestes condicions tan extremes perquè entren en estat de criptobiosi quan les condicions són desfavorables. És un estat extrem d’anabiosi (disminució del metabolisme). Segons les condicions que han de suportar, la criptobiosi es classifica en:

  • Anhidrobiosi: en cas de deshidratació del medi, entren en “estat de barril” ja que adopten aquesta forma per reduir la seva superfície i s’emboliquen en una capa de cera per evitar la pèrdua de l’aigua per transpiració. Per evitar la mort de les cèl·lules, sintetitzen trehalosa, un sucre que substitueix a l’aigua del seu cos i manté intacta l’estructura de les membranes cel·lulars. Redueixen el contingut d’aigua del seu cos fins a només un 1% i seguidament detenen el seu metabolisme gairebé per complet (0,01% per sota del normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardígrad deshidratat. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
  • Criobiosi: en cas de sotmetre’s a baixes temperatures, l’aigua de gairebé qualsevol ésser viu cristal·litza, trenca l’estructura de les cèl·lules i l’ésser viu mor. Però els tardígrads utilitzen proteïnes que congelen bruscament l’aigua de les cèl·lules en forma de petits cristalls, de manera que aconsegueixen evitar el seu trencament.
  • Osmobiosi: es dóna en cas d’augment de la concentració salina del medi.
  • Anoxibiosi: en cas de manca d’oxigen, entren en un estat d’inactivitat en el que deixen el seu cos totalment estirat, de manera que necessiten aigua per mantenir-se turgents.

En el cas de les exposicions a les radiacions, que destruirien l’ADN, s’ha observat que els tardígrads són capaços de reparar el material genètic malmès.

Aquestes tècniques ja han estat imitades en camps com la medicina, conservant òrgans de rates per posteriorment “reviure’ls” i poden obrir altres vies de conservació de teixits vius i trasplantaments. També obren nous camps en l’exploració espacial de vida extraterrestre (astrobiologia) i fins i tot en l’exploració humana de l’espai per resistir llargs viatges interplanetaris, en idees de moment, més properes a la ciència ficció que a la realitat.

SÓN EXTRATERRESTRES?

L’escàs registre fòssil, el seu parentiu evolutiu poc clar i la seva gran resistència, van provocar hipòtesis que especulaven amb la possibilitat que els tardígrads hagin vingut de l’espai exterior. No es tracta d’una idea sense cap ni peus, encara que altament improbable. La panspèrmia és la hipòtesi per la qual la vida, o millor dit, les molècules orgàniques complexes, no es van originar a la Terra, sinó que van arribar gràcies a meteorits durant els inicis del Sistema Solar. De fet, s’han trobat meteorits amb aminoàcids (molècules indispensables per a la vida) en la seva composició, de manera que la panspèrmia és una hipòtesi que no es pot descartar encara.

Foto de Eye Of Science/Photolife Library
Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Però no és el cas dels tardígrads: el seu ADN és igual al de la resta d’éssers vius terrestres i els últims estudis filogenètics els emparenten amb els onicòfors (animals semblants a cucs), asquelmints i artròpodes. El que és fascinant és que és l’animal amb més ADN aliè: fins al 16% del seu genoma pertany a fongs, bacteris o arquees, obtinguts per un procés anomenat transferència genètica horitzontal. La presència de gens aliens a altres espècies animals no sol ser més de l’1%. Serà això el que li ha permès desenvolupar aquesta gran resistència?

VOLS BUSCAR TARDÍGRADS TU MATEIX I OBSERVAR-LOS EN ACCIÓ?

En ser tan comuns i habitar potencialment gairebé qualsevol lloc, si disposes d’un microscopi, per senzill que sigui, pots buscar i veure tardígrads vius amb els teus propis ulls:

    • Agafa un tros de molsa d’una roca o mur, millor si està una mica sec.
    • Deixa’l assecar al sol i neteja’l de terra i altres restes grans.
    • Posa’l a l’inrevés en un recipient transparent (com una placa de Petri), mulla’l amb aigua i deixa-ho reposar unes hores.
    • Retira la molsa i busca els tardígrads a l’aigua del recipient (posa-ho en un fons negre per veure més fàcilment). Si hi ha sort, amb una lupa els podràs veure movent-se
    • Agafa’ls amb una pipeta o comptagotes, col·loca’ls en el portaobjectes i a gaudir! Podries veure coses semblants a aquesta:

Mireia Querol Rovira

REFERENCIAS

Què ens diuen els insectes sobre la salut dels nostres rius?

Actualment, la preocupació vers l’estat de salut de les aigües continentals (rius, llacs, etc.) va en augment, sobretot degut al creixent ús (i abús) d’aquestes pel consum humà. Des de fa ja uns quants anys que s’està expandint l’ús d’índex que, en base a dades d’abundància, presència o absència de certs organismes al medi d’estudi, ens permeten determinar la qualitat de les aigües. Entre aquests organismes, hi trobem molts artròpodes.

En aquest article, us explicaré breument què són els bioindicadors, el paper que juguen els artròpodes en la bioindicació i alguns dels índexs de bioindicació més emprats per mesurar la qualitat dels ecosistemes fluvials de la Península Ibèrica.

Què és un bioindicador?

El terme bioindicador sol al·ludir a aquells processos biològics, espècies i/o comunitats d’organismes que ens serveixen per avaluar qualitativament la qualitat o estat d’un ecosistema i la forma com aquest evoluciona al llarg del temps, fet que és especialment útil en el cas de canvis introduïts per pertorbacions antropogèniques (p.ex. contaminació).

Per tant, un bioindicador pot ser:

  • Tant una espècie en concret, la presència/absència de la qual en el lloc d’estudi ens informa de l’estat de salut de l’ecosistema.
  • Una població o una comunitat formada per diferents organismes que variï, funcional o estructuralment, en consonància amb les condicions del seu medi.

Exemple: el liquen Lecanora conizaeoides és molt resistent a la contaminació. La seva presència, més la desaparició d’altres líquens, és indicativa d’una contaminació atmosfèrica elevada.

Lecanora conizaeoides (Foto per James Lindsey).

Què considerem un “bon bioindicador”?

No tots els organismes són aptes per ser emprats com a bioindicadors. Tot i que no existeix un model estàndard de bioindicador, ja que tot depèn de l’ecosistema que s’estudiï, sí que podem agrupar alguns dels principals requisits que han de complir els organismes per a ser considerats uns “bons bioindicadors”:

  • Han de respondre a les pertorbacions del seu medi en major o menor mesura. Aquesta resposta ha de ser equiparable a tots els organismes de la mateixa espècie i correlacionar-se bé amb la perturbació.
  • La seva resposta ha de ser representativa de la de tota la comunitat o població.
  • Han de localitzar-se de forma natural al medi que s’estudia i ser ubics (és a dir, estar presents a tots els ecosistemes que presentin unes característiques similars o iguals a les del lloc d’estudi).
  • Ser abundants (les espècies rares no són gaire òptimes).
  • Ser relativament estables davant de canvis moderats del clima (és a dir, que una tempesta o una variació natural de la temperatura no els afecti més enllà del normal).
  • Ser fàcils de detectar i, a ser possible, de poca mobilitat (sedentaris).
  • Estar ben estudiats, tant des d’un punt de vista ecològic com taxonòmic (conèixer, per tant, quin és el seu grau de tolerància a les pertorbacions).
  • Ser fàcils de manipular i testejar al laboratori.

L’ús de bioindicadors sempre serà més òptim si no ens limitem a fer servir com a referència poblacions d’una o dues espècies i fem servir comunitats senceres, abraçant així un rang molt ampli de toleràncies ambientals: des d’organismes amb unes necessitats ambientals de rang estret (és a dir, estenoics) i/o sensibles a la contaminació, fins a organismes molt tolerants capaços de sobreviure en medis molt pertorbats.

Així, podrem saber que un ecosistema està molt pertorbat si, per exemple, només hi trobem una única espècie molt tolerant i cap de les considerades sensibles.

Animals bioindicadors d’aigües continentals

A dia d’avui es fan servir molts animals com a bioindicadors: des de microorganismes i invertebrats, fins a vertebrats terrestres i aquàtics (micromamífers, aus, peixos, etc.). En aigües continentals, i especialment en estudis de qualitat d’aigües fluvials, es fan servir sobretot macroinvertebrats aquàtics. Veiem a continuació què és un macroinvertebrat.

Què són els macroinvertebrats?

El terme macroinvertebrat no correspon a cap classificació taxonòmica, sinó a un concepte artificial que abraça diferents organismes invertebrats aquàtics.

Generalment, es diu que un oorganisme és un macroinvertebrat quan pot ésser capturat per una xarxa els orificis de la qual (el que tècnicament es coneix com a “llum de la malla”) siguin de 250μm.

9895263846_fd51b55e3f_c
Recollida de macroinvertebrats fent servir una xarxa d’arrossegament (Imatge per USFWS/Southeast , Creative Commons).

Els macroinvertebrats són, majoritàriament, bentònics, és a dir, habitants dels substrat del fons dels sistemes aquàtics, com a mínim durant alguna fase del seu cicle vital (encara que també n’hi ha que es desplacen lliurement per la columna d’aigua o per la seva superfície).

Als rius i llacs trobem molts grups de macroinvertebrats, els quals poden ésser classificats en dos grups:

macroinv (català)
Fonts de les fotografies: (1) Luis Silva Margareto ©, (2) DPDx Image Library, (3) Oakley Originals, Creative Commons, (4) Ryan Hodnett, Creative Commons, (5) Will Thomas, Creative Commons, (6) Duncan Hull, Creative Commons.

Entre aquests grups, n’hi ha que són molt tolerants a les pertorbacions del medi (per ex. les sangoneres) i d’altres que en són molt sensibles (moltes larves d’insectes).

La majoria de macroinvertebrats d’aigües continentals (≃80%) són artròpodes (dels quals us parlaré en el següent apartat), entre els que destaquen molts insectes i, especialment, les seves formes larvàries (generalment bentòniques), l’observació i anàlisi de les quals és vital pel càlcul de molts índexs de qualitat de les aigües continentals.

Els insectes en la bioindicació

Com us he comentat abans, al voltant d’un 80% dels macroinvertebrats d’aigües continentals són artròpodes, i, majoritàriament, ordres d’insectes en la seva forma larvària o de nimfa. Veiem alguns dels més freqüents:

Tricòpters

Insectes estretament emparentats als lepidòpters (papallones i arnes). Les seves nimfes aquàtiques construeixen refugis al voltant del seu cos mitjançant materials que arrossega el riu. Es diferencien de la resta de larves aquàtiques d’insecte perquè posseeixen un parell de filaments anals amb unes ungles molt fortes. Solen aparèixer en zones d’aigües netes amb força corrents.

Nimfa (dins del seu refugi, esquerra)  i adult de tricòpter (dreta). Fotos de la nimfa per Matt Reinbold (Creative Commons) i de l’adult per Donald Hobern (Creative Commons).

Efemeròpters (o efímeres)

Un dels ordres d’insectes alats més primitiu. Les seves nimfes aquàtiques, les quals tendeixen a viure als rius, es caracteritzen per presentar tres pèls anals molt llargs. Els adults, que volen a prop de l’aigua, són molt fràgils, i el seu cicle de vida és molt curt en comparació al de les nimfes (motiu pel qual es coneixen vulgarment com a “efímeres”).

Nimfa (esquerra) i adult d’efemeròpter (dreta). Fotos de la nimfa por Keisotyo (Creative Commons) i de l’adult per Mick Talbot (Creative Commons).

Plecòpters

Insectes alats amb nimfes aquàtiques molt similars a la dels efemeròpters. També presenten pèls anals, però es diferencien d’aquests per desenvolupar dues ungles apicals a cada pota. Viuen sobretot en llacs i rierols

Nimfa (esquerra) i adult de plecòpter (dreta). Fotos de la nimfa per Böhringer (Creative Commons) i de l’adult per gailhampshire (Creative Commons).

Altres grups amb larves o nimfes aquàtiques

Entre els insectes més comuns de rius i llacs també cal destacar diversos representants de l’ordre Odonata (libèl·lules i espiadimonis), Coleoptera (escarabats), Diptera (mosques i mosquits), etc.

Entre tots els insectes que us he anat introduint, n’hi ha que són molt tolerants a la contaminació (per ex., larves de moltes espècies de dípters; aquest és el cas d’algunes espècies de quironòmids –mosquits– tolerants a la contaminació orgànica i inorgànica per metalls pesants) i d’altres que en són molt sensibles (per ex. algunes espècies de tricòpter), passant per estadis intermedis.

Segons el seu grau de tolerància a les pertorbacions, els científics agrupen aquests organismes (més la resta de macroinvertebrats) en categories a les quals se’ls assigna un valor que, posteriorment, ens permet calcular índexs de qualitat del seu medi.

Índexs biòtics per a aigües fluvials

Els diferents graus de tolerància que manifesten els macroinvertebrats d’una comunitat vers les pertorbacions del seu medi ens permeten classificar-los i assignar-los un valor qualitatiu dins d’una escala (com més gran sigui el valor, més sensible és l’organisme a la contaminació). Mitjançant aquests valors, podem calcular diversos índexs biòtics, que no són més que valors qualitatius que s’assignen a una comunitat amb la fi de classificar-la segons la seva qualitat: com més gran sigui l’índex, més elevada serà la qualitat de l’aigua i del medi.

Un dels índexs més emprats en l’avaluació de l’estat ecològic dels rius de la península Ibèrica és el IBMWP (Iberian Bio-Monitoring Working Party), una adaptació de l’índex britànic BMWP per Alba Tercedor (1988). A grans trets, com més gran sigui el seu valor, major serà la qualitat de l’aigua. En aquest web podeu consultar més detalls sobre aquest índex, així com els valors que s’assignen a cada macroinvertebrat.

També es fa servir l’índex IASPT, un índex complementari que correpon al valor de IBMWP dividit pel número de taxons de macroinvertebrats identificats. Aquest ens dóna informació sobre el tipus de comunitat dominant al tram de riu estudiat. Podeu veure més detalls clicant a aquest link.

.      .      .

Com haureu pogut veure al llarg d’aquest article, els macroinvertebrats, i especialment els insectes, juguen un rol vital en l’estudi de la qualitat de les aigües continentals. A més a més, la seva presència o absència és de gran importància per a la resta d’organismes del seu ecosistema, motiu pel qual hem d’ésser conscients que, tot i ser molt abundants, la reducció del seu número i/o diversitat pot comportar efectes negatius en cadena de difícil reparació.

REFERÈNCIES

Foto de portada per U.S. Fish and Wildlife Service Southeast Region.

Difusió-català

Maratus sp.: l’aranya que volia ser un paó reial

Si us digués que a Austràlia viuen paons reials d’uns 5mm, us ho creuríeu? Si bé és cert que en aquest país habiten organismes sorprenents, a hores d’ara els científics encara no hi han descobert aus tan petites. Ara bé, sí hi podem trobar uns animals diminuts que s’assemblen molt a aquestes aus: les aranyes paó reial (Maratus sp., Família Salticidae), l'”abdomen” o opistosoma de les quals (és a dir, la part posterior del cos de les aranyes) presenta una mena d’ales que poden desplegar a ambdós costats del cos, ben bé com si es tractés de la cua d’un paó reial.

El mes passat us vam ensenyar algunes fotografies d’aquests organismes als webs de les nostres xarxes socials. Al llarg d’aquest article, coneixereu les seves característiques més peculiars i descobrireu la funció que amaga l’opistosoma desplegable que presenten.

LES ARANYES SALTARINES

Les aranyes paó reial es situen dins la família Salticidae, grup que inclou les aranyes comunament conegudes com a aranyes saltarines o saltícids. Aquesta família inclou més de 5000 espècies (essent possiblement el grup d’aranyes més divers i abundant) i la seva distribució és pràcticament mundial (podent-se trobar, fins i tot, al cim de l’Everest; aquest és el cas de l’espècie Euophrys omnisuperstes). Ara bé, la majoria d’espècies es concentra sobretot en boscos tropicals.

¿COM PODEM DISTINGIR-LES?

CARACTERÍSTIQUES GENERALS

Generalment, les aranyes de la família Salticidae assoleixen una llargada d’uns pocs mil·límetres quan són adultes (el més habitual és que no sobrepassin els 10mm). Anatòmicament, els organismes d’aquest grup es caracteritzen per posseir dos grans ulls simples frontals flanquejats per dos de més petits, més quatre de molt petits situats per sobre i als costats d’aquests. La mida i posició d’aquests ulls els confereixen una visió excel·lent en comparació a altres grups d’aranyes, i fins tot comparada amb altres artròpodes la seva capacitat visual resulta excepcional.

Mireu quins ulls més grossos! Hi ha algú que se’n resisteixi?

Exemplar de l’aranya saltarina Paraphidippus auranticus (Foto de Thomas Shahan (c)).

A banda d’una bona visió, aquestes aranyes tenen la capacitat de saltar una distància de fins a 50 cops la seva longitud, motiu pel qual van rebre el sobrenom de “saltarines”. Així, són sobretot la seva capacitat per desplaçar-se llargues distàncies d’un únic salt i la seva visió extraordinària els dos trets que fan que aquestes aranyes siguin unes depredadores excel·lents, les quals cacen les seves presses per mitjà de la tècnica de l’aguait sense haver de construir teranyines o trampes de seda. A més a més, algunes de les seves potes davanteres tendeixen a ser més llargues que la resta, fet que millora la subjecció de les preses.

Aranya saltarina depredant un exemplar de Diaea evanida o aranya rosa de les flors (Foto de James Niland a Flickr, Creative Commons).

Els individus d’aquesta família d’aranyes solen presentar un dimorfisme sexual molt marcat (és a dir, diferències fisiognòmiques notables entre mascles i femelles). Els mascles de les aranyes saltarines solen tenir uns apèndixs bucals (o palps) molt grossos, els quals fan servir durant els balls nupcials i la còpula tant per cridar l’atenció de les femelles com per transmetre’ls l’espermatòfor (massa o càpsula d’espermatozous) durant l’aparellament.

Mascle d’araña saltarina de l’espècie Sitticus fasciger; s’aprecien els palps engruixits (de color fosc) (Foto de sankax a Flickr, Creative Commons).
Femella d’aranya saltarina de l’espècie Sitticus fasciger (Foto de sankax a Flickr, Creative Commons).

A banda d’uns palps força desenvolupats, els mascles d’algunes espècies d’aquesta família d’aranyes es caracteritzen per presentar un opistosoma (part posterior del cos de les aranyes) colorit o amb propietats iridiscents; alguns, fins i tot, són capaços de reflectir les radiacions UV procedents del Sol, les quals són detectades per les femelles de la seva mateixa espècie gràcies a la seva excel·lent capacitat visual, tal i com suggereixen alguns estudis recents. Les femelles, en canvi, solen ser de colors més apagats i críptics (encara que no sempre).

REFERÈNCIES

La vida secreta de les abelles

De ben segur que, en pensar en una abella, et vingui al cap la imatge d’una colònia d’insectes molt ben organitzada, voleiant al voltant d’una bresca formada per cel·les de cera ben delimitades i plenes de mel.

Però el cert és que no totes les abelles de les que es té coneixement avui en dia s’organitzen en societats jerarquitzades ni totes elles fabriquen mel. Tot el contrari: la major part de les espècies desenvolupen formes de vida solitàries totalment contràries a la imatge clàssica de l’abella de la mel, tan apreciada pels apicultors.

Al llarg d’aquest article, tractaré de resumir les diferents formes de vida de les abelles amb la finalitat d’esclarir una mica tot aquest assumpte.

INTRODUCCIÓ

Les abelles configuren un grup d’insectes molt divers dins l’ordre dels Himenòpters, el qual també inclou les vespes i les formigues. Avui en dia es coneixen al voltant de 20.000 espècies d’abelles arreu del món, encara que es sospita que n’hi podria haver moltes més sense classificar. La seva distribució és quasi planetària, doncs a excepció de l’Antàrtida es poden trobar en tots els continents del món i pràcticament en tots aquells hàbitats on hi creixen plantes amb flors.

Les abelles tenen un gran interès ecològic ja que, al marge de presentar diferents formes de vida, gairebé totes viatgen de flor en flor recollint nèctar i pol·len per nodrir-se tant elles com a les seves larves, el que al seu torn propicia el fenomen de la pol·linització; així doncs, la seva activitat contribueix a potenciar la biodiversitat floral de la zona.

Exemplar d’Apis mellifera o abella de la mel (Foto de Leo Oses en Flickr)

Ara bé, encara que en general comparteixin una alimentació basada en nèctar i pol·len, no totes les espècies d’abelles desenvolupen els mateixos hàbits de vida.

FORMES DE VIDA DE LES ABELLES

ABELLES SOLITÀRIES

La majoria d’espècies d’abelles a escala mundial, al contrari del que és habitual pensar, són solitàries: neixen i es desenvolupen soles, es reprodueixen en un moment molt concret de la seva vida en trobar-se grups de mascles i femelles i, finalment, moren soles. Si bé es cert que algunes d’aquestes abelles viuen en grups, en cap cas cooperen entre elles com sí ho fan les abelles colonials.

En les formes solitàries, són les femelles les que construeixen, sense ajuda de cap altre exemplar, un niu format per una o vàries cel·les separades (o no) per envans de diferents materials (fang, material vegetal mastegat, fulles, etc.); posteriorment, proveeixen aquestes cel·les amb pol·len i nèctar (l’aliment perfecte per les larves) i, finalment, hi dipositen els ous. Aquests nius, a diferència dels ruscs, tendeixen a ser molt discrets, essent difícils de reconèixer a simple vista.

El lloc on les abelles solitàries construeixen el niu és molt variable: sota terra, dins de fulles recargolades, a l’interior de closques de cargol buides o, fins i tot, en cavitats preestablertes (artificials o construïdes i abandonades per altres animals), entre d’altres.

Aquestes abelles no es generen massivament a l’interior d’un rusc ni fabriquen mel, essent aquests els motius principals i més probables pels quals gaudeixen de menys fama que l’abella de la mel o Apis mellifera, la qual sí construeix ruscs. La majoria d’estudis relacionats amb abelles es focalitzen en aquesta espècie, deixant en segon pla l’estudi i protecció de les formes de vida solitàries, tot i ser aquestes les majors contribuents a la pol·linització degut al seu elevat número i diversitat; algunes, fins i tot, són pol·linitzadores exclusives d’una única espècie de planta, fet que revela una estreta relació entre ambdós organismes.

Existeix una gran varietat d’abelles solitàries de diversa morfologia:

3799308298_ff9fbb1bcc_n7869021238_a811f13aa4_n1) Exemplar d'Andrena sp. (Foto de kliton hysa a Flickr); 
2) Exemplar de Xylocopa violacea, l'abella fustera o abellot negre (Foto de Nora Caracci fotomie2009 a Flickr); 
3) Exemplar d'Anthidium sp. (Foto de Rosa Gambóias a Flickr).

Dins les abelles solitàries també existeixen formes paràsites: abelles que s’aprofiten dels recursos d’altres insectes (fins i tot d’altres abelles), és a dir, dels hostes, causant-los un greuge. Aquest és el cas de les abelles del gènere Nomada sp., les espècies del qual dipositen els ous dins els nius d’altres abelles; en néixer, les larves paràsites s’alimenten del nèctar i el pol·len del niu que parasiten, deixant a les abelles parasitades sense recursos. Aquest tipus concret de parasitisme es coneix com a cleptoparasitisme (klepto = robar), atès que les larves paràsites roben, literalment, l’aliment de les larves de l’espècie hoste.

ABELLES PSEUDOSOCIALS

Deixem de banda les formes solitàries i, avançant en complexitat, ens trobem amb les formes pseudosocials: abelles que formen grups relativament organitzats i jerarquitzats, però sense arribar mai a l’alçada de les formes verdaderament socials, com és el cas d’Apis mellifera.

Possiblement, l’exemple més famós és el de l’abellot (Bombus sp.). Aquestes abelles formen colònies en les que la o les reines (femelles fecundades) són els únics exemplars que sobreviuen a l’hivern; la resta, mor degut al fred. Gràcies a elles, però, les colònies tornen a revifar durant la primavera següent.

5979114946_9d491afd84_nExemplar de Bombus terrestris o borinot (Foto de Le pot-ager "Je suis Charlie" a Flickr).

ABELLES EUSOCIALS

Finalment, les abelles més evolucionades en quan a complexitat de la seva estructura social són les abelles eusocials o verdaderament socials. L’únic cas reconegut avui dia és el de l’abella de la mel o Apis mellifera.

Donat que l’objectiu d’aquest article era desmentir el mite que “totes les abelles formen colònies, construeixen ruscs i fabriquen mel”, només diré que aquestes abelles formen complexes estructures socials jerarquitzades (un fenomen molt rar, també observat en tèrmits i formigues) liderades normalment per una única reina, construeixen grans ruscs formats per bresques de cera i produeixen mel, un producte d’elevat contingut calòric molt apreciat per l’ésser humà.

Exemplars d’Apis mellifera sobre una bresca plena de mel (Foto de Nicolas Vereecken a Flickr).

Com hem pogut veure, les abelles solitàries juguen un rol vital en termes de pol·linització, motiu pel qual haurien d’estar molt més protegides. En canvi, continuen sent les abelles de la mel les que s’enduen la major part de l’atenció degut, sobretot, als recursos directes que aquestes aporten a l’ésser humà.

REFERÈNCIES

  • Apunts i memòria personals de les pràctiques acadèmiques del grau en Biologia Ambiental realitzades al curs 2013-2014 al CREAF (Centre de Recerca Ecològica i Aplicacions Forestals). Universitat Autònoma de Barcelona.
  • O’toole, C. & Raw A. (1999) Bees of the world. Ed Blandford
  • Pfiffner L., Müller A. (2014) Wild bees and pollination. Research Institute of Organic Agriculture FiBL (Switzerland).
  • Solitary Bees (Hymenoptera). Royal Entomological Society: http://www.royensoc.co.uk/insect_info/what/solitary_bees.htm
  • Stevens, A. (2010) Predation, Herbivory, and Parasitism. Nature Education Knowledge 3(10):36

Si t’ha agradat aquest article, no dubtis a compartir-lo a través de les xarxes socials per fer-ne difusió. Gràcies a la vostra col·laboració, la divulgació de la ciència i la natura arriba a molta més gent!


Llicència Creative Commons

Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.