Arxiu d'etiquetes: tuatara

Tuatara: reintroduction of a living fossil

There’s a reptile in New Zealand whose lineage arose in the time of the dinosaurs. Even if its external appearance is similar to that of a lizard, the tuatara (whose name means “spiny back” in the Maori language) is an animal with many unique characteristics that classify it in an order different from the other reptiles. In this entry we’ll explain the main characteristics of this relic from the past, as interesting as endangered.


The tuataras are unusual reptiles whose lineage goes back to 240 million years ago, at the middle Triassic. Tuataras are lepidosaurs, yet they form a different lineage from the squamates, and that’s why they are found in their own order, the rhynchocephalians (order Rhynchocephalia). Lots of species flourished during the Mesozoic, even if almost all of them were replaced by squamates. At the end of the Mesozoic only one family survived, the Sphenodontidae.

Homoeosaurus fossil, an extinct relative of the tuataras. Photo by Haplochromis.

Of all the existing sphenodontids, only tuataras have survived to the present day. Traditionally it was considered that tuataras included two species: the common tuatara (Sphenodon punctatus) and the Brother’s Island tuatara (Sphenodon guntheri), although recent analyses have popularized the idea that the tuatara is only one species, S. punctatus.


As we have already stated, tuataras look externally like a lizard, having a certain resemblance to iguanas. Male tuataras are larger than females, measuring up to 61 cm in length and one kilogramme of weight, while females only measure 45 cm and weigh half a kilo. Tuataras present a spiny crest on their backs which give them their common name. This crest is bigger in males, and can be erected as display.

Photo by KeresH of a young male tuatara.

What really distinguishes the tuataras is their internal anatomy. All the other reptiles have modified greatly their skull structure, but tuataras have maintained the original diapsid configuration without most changes. While crocodiles and turtles have developed a sturdy skull, tuataras conserve wide temporal openings, and while squamates have developed flexible skulls and jaws, tuataras keep a rigid cranium. Also, unlike most reptiles, tuataras present no external ears.

Modified image from the drawing by Nobu Tamura of the tuatara skull. In it we can see the main characteristics that distinguish it: 1. Beak-shaped premaxilla, 2. Acrodont teeth, fused to the jaws, 3. Diapsid-like wide temporal openings and 4. Parietal or pineal opening.

The name Rhynchocephalia means “beak head” and it refers to the beak-like structure of their premaxilla. Tuataras are also one of the few reptiles with acrodont teeth, which are fused to the maxilla and the jaw, and are not renewed. Also, they present a unique saw-like jaw movement, moving it forwards and backwards.

Video by YouOriginal, of some captive tuataras feeding. In this video we can appreciate the singular jaw movement.

Finally, one of the more incredible anatomic characteristics of tuataras is that they conserve their parietal or pineal eye. This is a structure reminiscent from the first tetrapods, which connects with the pineal gland and which is involved in the thermoregulation and circadian rhythms. Even if some other animals also keep it, the tuataras present a real third eye, with complete lens, cornea and retina, even if it gets covered with scales as they age.


Tuataras live in some thirty islets in the Cook Strait, between the two main islands of New Zealand. Also, the previously considered species S. guntheri is found on Brother’s Island, in the northwest of South Island. All populations live in coastal forests or scrublands, with loose soils easy to dig. Also, in most of their distribution area there are colonies of sea birds, whose nests are also used by tuataras.

Photo by Satoru Kikuchi of a typical humid forest of New Zealand.

Compared with most reptiles, tuataras live in relatively cold habitats, with annual temperatures oscillating between 5 to 28°C. Tuataras are mainly nocturnal, usually coming out of their burrows at night, even if sometimes they can be found basking in the sun during the day (especially in winter).

Tuataras have few natural predators. Apart from some introduced animals, only gulls and some birds of prey represent a danger for these reptiles. In contrast, their diet is fairly varied. Being sit-and-wait predators, tuataras feed mainly on invertebrates like beetles, crickets and spiders, even if they are able to predate on lizards, eggs and bird chicks, and even younger tuataras. As their acrodont teeth don’t renew, these get worn down in time, so older individuals usually feed on softer prey like snails and worms.

Tuataras mate between January and March (summer), when the territorial males compete for the females, which will lay around 18-19 eggs between October and December (spring). The sex of the offspring depends on the incubation temperature (males at higher temperatures and females at lower ones). The eggs will hatch after 11-16 months (one of the longest incubation periods of all reptiles), from which young tuataras will be born, who will avoid the cannibalistic adults being active mainly during the day.

Unique video of the birth of a tuatara at the Victoria University of Wellington. The translucent mark on the little tuatara’s head corresponds to the parietal eye.

As we can see based on their long incubation period, tuataras develop slowly. These reptiles do not reach sexual maturity until the age of 12, and they keep growing. Also, tuataras are extremely long-lived animals, living up to more than 60 years in the wild. In captivity they can live more than 100 years.


Before the arrival of man, the tuataras were present in both main islands of New Zealand and many more islets. When the first European settlers arrived, tuataras were already only found in about 32 little islands. It’s believed that the extinction of tuataras from the main islands was due to habitat destruction and to the introduction of foreign mammals like rats. Other threats include the low genetic diversity caused by isolation of the different populations and climate change, which can affect the sex of the offspring.

Current distribution map of the tuataras. The squares correspond to the old species Sphenodon guntheri, now considered a population of S. punctatus.

When the first human settlers arrived in the isles, it is thought that 80% of New Zealand was covered in forests. When the first Polynesian tribes came around the year 1250, they caused the deforestation of more than half the archipelago. Centuries later, with the arrival of Europeans, deforestation intensified even more, up to the current situation, with only 23% of the original forest still preserved.

Photo by Cliff of a Pacific rat (Rattus exulans), one of the main threats for the tuataras.

The introduction of foreign mammals has been one of the main factors of the recent decline of tuataras, especially the introduction of the Pacific rat (Rattus exulans). This rodent has affected the populations of both tuataras and many of New Zealand’s endemic bird species. In studies on coexisting populations of tuataras and rats, it has been observed that rats, apart from preying on eggs and hatchlings, also compete with adult tuataras for resources. With an extremely slow life cycle, tuataras can’t recover from this impact.

Photo by Br3nda of a reintroduced and tagged tuatara.

Yet, tuataras are currently classified as “least concern” in the IUCN red list. This is thanks to the great efforts of conservation groups that have contributed to the recovery of this species. One of the main tasks has been the eradication of the Pacific rat from the main island where tuataras live. In order to do that, a titanic effort was made in many islets where entire populations of tuataras were captured to participate in captive breeding programs, while the rats were eliminated from these islands. After their main threat was eradicated, all the captured individuals and their captive-born offspring were released in their natural habitat so they could live without such a fierce competitor.

Video by Carla Braun-Elwert, about the breeding success of an old tuatara couple.

Currently, the wild tuatara population is estimated to be between 60.000 and 100.000 individuals. It can be said that this living fossil, which was on the brink of extinction after millions of years of existence, received a second opportunity to keep inhabiting the incredible islands of New Zealand. We hope that in the future, we can keep enjoying the existence of these reptiles, the only survivors of a practically extinct lineage, for many more centuries.


The following sources have been consulted during the elaboration of this entry:



Tuatara: reintroducción de un fósil viviente

En Nueva Zelanda existe un reptil cuyo linaje surgió en la época de los dinosaurios. Aunque su aspecto externo se parece al de un lagarto, el tuatara (cuyo nombre significa “espalda espinosa” en lengua maorí) es un animal con muchas características únicas que hacen que se le clasifique en un orden propio separado del resto de reptiles. En esta entrada os explicaremos las principales características de esta reliquia del pasado tan interesante como amenazada.


Los tuataras son unos reptiles inusuales cuyo linaje se remonta a hace 240 millones de años, a mitades del periodo Triásico. Los tuataras son lepidosaurios, aunque forman un linaje distinto a los escamosos, por lo que se encuentran en su propio orden, los rincocéfalos (orden Rhynchocephalia). Muchas especies florecieron durante el Mesozoico, aunque prácticamente todas fueron reemplazadas por los escamosos. A finales del Mesozoico solo quedaba una familia, los Sphenodontidae.

Fósil de Homoeosaurus, un pariente extinto de los tuataras. Foto de Haplochromis.

De todos los esfenodóntidos que existieron, solo los tuataras han sobrevivido hasta la actualidad. Tradicionalmente se consideraba que los tuataras incluían dos especies: el tuatara común (Sphenodon punctatus) y el tuatara de la Isla Brothers (Sphenodon guntheri), aunque análisis recientes han popularizado la idea de que el tuatara es una única especie, S. punctatus.


Como ya hemos comentado, los tuataras se parecen externamente a un lagarto, teniendo cierto parecido con las iguanas. Los machos de tuatara son mayores que las hembras, llegando a los 61 cm de longitud y el quilo de peso, mientras que éstas solo alcanzan los 45 cm y el medio quilo. Los tuataras presentan una hilera de espinas en el dorso que les confiere su nombre común. Ésta es mayor en los machos, y puede erizarse para exhibirse.

Foto hecha por KeresH de un joven macho de tuatara.

Lo que realmente distingue a los tuataras es su anatomía interna. El resto de reptiles han modificado mucho la estructura de su cráneo, pero los tuataras han conservado la estructura diápsida original sin muchos cambios. Mientras que cocodrilos y tortugas han desarrollado cráneos macizos, los tuataras conservan amplias aperturas temporales, y aunque los escamosos han desarrollado cráneos y mandíbulas muy flexibles, los tuataras mantienen un cráneo rígido. Además, a diferencia de la mayoría de reptiles, los tuataras no presentan oídos externos.

Imagen modificada del dibujo de Nobu Tamura sobre el cráneo del tuatara. En él vemos las principales características que lo distinguen: 1. Premaxilar en forma de pico, 2. Dientes acrodontos fusionados a las mandíbulas, 3. Amplias aperturas temporales típicamente diápsidas y 4. Apertura parietal o pineal.

El nombre Rhynchocephalia significa “cabeza de pico” y se refiere a la estructura de pico de su premaxilar. Los tuataras también son de los pocos reptiles con dientes acrodontos, los cuáles se encuentran fusionados al maxilar y la mandíbula y no se renuevan. Además, presentan un movimiento mandibular único tipo sierra, moviendo la mandíbula adelante y atrás.

Vídeo de YouOriginal, de unos tuataras en cautividad alimentándose. En este vídeo podemos apreciar el movimiento singular de la mandíbula.

Finalmente, una de las características anatómicas más increíbles de los tuataras es que éstos conservan el ojo parietal o pineal. Ésta es una estructura reminiscente de los primeros tetrápodos, conectada con la glándula pineal y que está involucrada en la regulación de la temperatura y los ritmos circadianos. Aunque algunos otros animales también lo conservan, los tuataras presentan un auténtico tercer ojo, con una retina y cristalino completos, aunque éste se va cubriendo de escamas con la edad.


Los tuataras viven en unos treinta islotes en el estrecho de Cook, entre las dos islas principales de Nueva Zelanda. Además, la antigua especie S. guntheri se encuentra en la isla de Brothers, en la parte nororiental de isla Sur. Todas las poblaciones viven en zonas boscosas o de matorral costeras, con suelos blandos donde poder cavar. Además, en gran parte de su área de distribución existen colonias de aves marinas, cuyos nidos son aprovechados por los tuataras.

Foto de Satoru Kikuchi de un típico bosque húmedo neozelandés.

Comparados con la mayoría de reptiles, los tuataras viven en hábitats relativamente fríos, con temperaturas anuales que oscilan entre los 5 y los 28°C. Los tuataras son principalmente nocturnos, saliendo de sus madrigueras normalmente por la noche, aunque a veces se les puede encontrar tomando el sol a pleno día (especialmente en invierno).

Los tuataras tienen pocos depredadores naturales. Aparte de algunos animales introducidos, sólo las gaviotas y algunas aves de presa presentan un peligro para estos reptiles. Su dieta, en cambio, es bastante variada. Siendo depredadores que esperan a que sus presas les pasen por delante, los tuataras se alimentan principalmente de invertebrados como escarabajos, grillos y arañas, aunque puede llegar a depredar pequeños lagartos, huevos y polluelos de aves, e incluso a tuataras más pequeños. Como sus dientes acrodontos no se renuevan, éstos se van desgastando al cabo del tiempo, por lo que los ejemplares más viejos suelen alimentarse de presas más blandas como caracoles y gusanos.

Los tuataras se reproducen entre enero y marzo (verano), momento en el que los territoriales machos compiten por las hembras, las cuáles pondrán unos 18-19 huevos entre octubre y diciembre (primavera). El sexo de las crías dependerá de la temperatura de incubación (machos a temperaturas más altas, hembras a más bajas). Los huevos eclosionarán al cabo de 11-16 meses (uno de los tiempos de incubación más largos de todos los reptiles), de los que saldrán pequeños tuataras que evitarán a los adultos caníbales siendo principalmente diurnos.

Vídeo único del nacimiento de un tuatara en la Victoria University de Wellington. La marca translúcida de la cabeza del pequeño tuatara corresponde al ojo parietal.

Como ya hemos visto por su largo período de incubación, los tuataras se desarrollan lentamente. Estos reptiles no llegarán a la madurez sexual hasta pasados los 12 años, aunque siguen creciendo a partir de entonces. Además, los tuataras son animales muy longevos, llegando a vivir hasta más de 60 años en estado salvaje. En cautividad pueden llegar a superar los 100 años de edad.


Antes de la llegada del hombre, los tuataras estaban presentes en las dos islas principales de Nueva Zelanda y en muchos más islotes. Cuando los colonos europeos llegaron, los tuataras ya sólo se encontraban en unas 32 pequeñas islas. Se cree que la desaparición de los tuataras de las islas principales se debe principalmente a la destrucción del hábitat y a la introducción de mamíferos foráneos como las ratas. Otras amenazas son la baja diversidad genética por el aislamiento de las distintas poblaciones y el cambio climático, que puede afectar al sexo de la descendencia.

Mapa de la distribución actual de los tuataras. Los cuadrados corresponden a la antigua especie Sphenodon guntheri, ahora considerada una población de S. punctatus.

Cuando el ser humano llegó a las islas, se cree que el 80% de Nueva Zelanda estaba cubierta de bosques. Con la llegada de las primeras tribus polinesias hacia el año 1250, empezó la deforestación de más de la mitad del archipiélago. Siglos después, con la llegada de los europeos, esta deforestación se intensificó aún más, hasta la situación actual, que solo se conserva el 23% del bosque original.

Foto de Cliff de una rata del Pacífico (Rattus exulans), una de las principales amenazas para los tuataras.

La introducción de mamíferos foráneos ha sido uno de los principales factores de declive de los tuataras en la actualidad, en especial la introducción de la rata del Pacífico (Rattus exulans). Este roedor ha afectado a las poblaciones, no solo de tuataras, sino también las de muchas especies de aves endémicas de Nueva Zelanda. En estudios de convivencia entre las ratas y los tuataras, se ha observado que las ratas, además de depredar sobre huevos y juveniles, también compiten con los tuataras adultos por los recursos. Con un ciclo vital tan lento, los tuataras no pueden recuperarse de este impacto.

Foto de Br3nda de un tuatara reintroducido y marcado.

Aun así, actualmente los tuataras están clasificados como bajo “preocupación menor” en la lista roja de la IUCN. Esto es gracias a los grandes esfuerzos de grupos conservacionistas que han contribuido a la recuperación de esta especie. Una de las principales tareas ha sido la eliminación de la rata del Pacífico de las principales islas donde habitan los tuataras. Para ello, se realizó un esfuerzo titánico en muchas islas en las que se capturaron poblaciones enteras de tuataras para la reproducción en cautividad, mientras se eliminaba a las ratas de dichas islas. Una vez eliminada su principal amenaza, todos los individuos capturados y sus descendientes nacidos en cautividad fueron devueltos a sus hábitats naturales para que pudieran vivir sin este fiero competidor.

Vídeo de Carla Braun-Elwert, sobre el éxito reproductor de una vieja pareja de tuataras.

Actualmente, la población salvaje de tuataras se estima entre los 60.000 y los 100.000 individuos. Se puede decir que este fósil viviente, que estuvo a punto de desaparecer después de millones de años de existencia, recibió una segunda oportunidad para seguir habitando las increíbles islas neozelandesas. Esperemos que en el futuro, podamos seguir disfrutando de la existencia de estos reptiles, únicos supervivientes de un linaje prácticamente extinto por muchos siglos más.


Se han consultado las siguientes fuentes durante la elaboración de esta entrada:


Tuatara: reintroducció d’un fòssil vivent

A Nova Zelanda existeix un rèptil el llinatge del qual va sorgir a l’època dels dinosaures. Encara que externament s’assembla a un llangardaix, el tuatara (el nom vol dir “esquena espinosa” en llengua maorí) és una animal amb moltes característiques úniques que fan que se’l classifiqui en un ordre propi separat de la resta de rèptils. En aquesta entrada us explicarem les principals característiques d’aquesta relíquia del passat tant interessant com amenaçada.


Els tuatares són rèptils inusuals el llinatge dels quals es remonta a fa 240 milions d’anys, a meitats del període Triàssic. Els tuatares són lepidosaures, tot i que formen un llinatge diferent al dels escamosos, pel que es troben en un ordre propi, els rincocèfals (ordre Rhynchocephalia). Moltes espècies es van diversificar durant el Mesozoic, tot i que pràcticament totes foren reemplaçades pels escamosos. A finals del Mesozoic només quedava una família, els Sphenodontidae.

Fòssil de Homoeosaurus, un parent extingit dels tuatares. Foto de Haplochromis.

De tots els esfenodòntids que van existir, només els tuatares han sobreviscut fins a l’actualitat. Tradicionalment es considerava que els tuatares incloïen dues espècies: el tuatara comú (Sphenodon punctatus) i el tuatara de la illa Brothers (Sphenodon guntheri), encara que anàlisis recents han popularitzat la idea de que el tuatara és una única espècie, S. punctatus.


Com ja hem comentat, els tuatares s’assemblen externament a un llangardaix, tenint certa semblança amb les iguanes. Els mascles de tuatara són més grans que les femelles, arribant als 61 cm de longitud i el quilo de pes, mentres que aquestes només arriben als 45 cm i el mig quilo. Els tuatares presenten una filera d’espines al dors que els confereix el seu nom comú. Aquestes és més gran en els mascles, i es pot eriçar per a exhibir-se.

Foto feta per KeresH d’un mascle jove de tuatara.

El que realment distingeix als tuatares és la seva anatomia interna. La resta de rèptils han modificat molt l’estructura del seu crani, però els tuatares han conservat la estructura diàpsida original sense molts canvis. Mentres que cocodrils i tortugues han desenvolupat cranis massissos, els tuatares conserven àmplies obertures temporals, i encara que els escamosos han desenvolupat cranis i mandíbules molt flexibles, els tuatares mantenen un crani rígid. A més, a diferència de la majoria de rèptils, els tuatares no presenten oïdes externes.

Imatge modificada del dibuix de Nobu Tamura sobre el crani del tuatara. En aquest hi veiem les principals característiques que el distingeixen: 1. Premaxil·lar en forma de bec, 2. Dents acrodonts fusionats a les mandíbules, 3. Àmplies obertures temporals típicament diàpsides i 4. Obertura parietal o pineal.

El nom Rhynchocephalia vol dir “cap de bec” i fa referència a l’estructura de bec del premaxil·lar. Els tuatares també són dels pocs rèptils amb dents acrodonts, els quals es troben fusionats al maxilar i la mandíbula y no es renoven. A més, presenten un moviment mandibular únic tipus serra, movent la mandíbula endavant i enrera.

Vídeo de YouOriginal, d'uns tuatares en captivitat alimentant-se. En aquest vídeo podem apreciar el moviment singular de la mandíbula.

Finalment, una de les característiques anatòmiques més increïbles dels tuatares és que aquests conserven el ull parietal o pineal. Aquesta, és una estructura reminiscent dels primers tetràpodes, conectada amb la glàndula pineal i que està involucrada en la regulació de la temperatura i els ritmes circadians. Encara que alguns altres animals també el conserven, els tuatares presenten un autèntic tercer ull, amb una retina i cristal·lí complets, encara que aquest es va cobrint d’escates amb l’edat.


Els tuatares viuen en uns trenta illots a l’estret de Cook, entre les dues illes principals de Nova Zelanda. A més, l’antiga espècie S. guntheri es troba a l’illa de Brothers, a la part nord-oriental de illa Sur. Totes les poblacions viuen en zones boscoses o de matollar costaneres, amb terres tous on poden excavar. A més, a gran part de la seva àrea de distribució existeixen colònies d’aus marines, els nius de les quals són aprofitats pels tuatares.

Foto de Satoru Kikuchi d’un típic bosc neozelandès.

Comparats amb la majoria de rèptils, els tuatares viuen en hàbitats relativament freds, amb temperatures anuals que oscil·len entre els 5 i els 28°C. Els tuatares són principalment nocturns, sortint dels seus caus normalment de nit, tot i que a vegades se’ls pot trobar prenent el sol a ple dia (especialment a l’hivern).

Els tuatares tenen pocs depredadors naturals. A part d’alguns animals introduïts, només les gavines i algunes aus de presa presenten un perill per aquests rèptils. La seva dieta, en canvi, és bastant variada. Sent depredadors que esperen a que les seves preses passin per davant seu, els tuatares s’alimenten principalment d’invertebrats com escarabats, grills i aranyes, tot i que poden arribar a depredar petits llangardaixos, ous i pollets d’aus, i fins i tot tuatares més petits. Com que les seves dents acrodontes no es renoven, aquestes es van desgastant al cap del temps, pel qual els exemplars més vells solen alimentar-se de preses més toves com cargols i cucs.

Els tuatares es reprodueixen entre gener i març (estiu), moment en el que els territorials mascles competeixen per les femelles, les quals pondràn uns 18-19 ous entre l’octubre i el desembre (primavera). El sexe de les cries dependrà de la temperatura d’incubació (mascles a temperatures més altes, femelles a més baixes). Els ous eclosionaran al cap de 11-16 mesos (un dels temps d’incubació més llargs de tots els rèptils), dels quals sortiran petits tuatares que evitaran als adults caníbals sent principalment diürns.

Vídeo únic del naixement d’un tuatara a la Victoria University de Wellington. La marca translúcida del cap del petit tuatara correspòn a l'ull parietal.

Com ja hem vist pel seu llarg període d’incubació, els tuatares es desenvolupen lentament. Aquests rèptils no arribaran a la maduresa sexual fins passats els 12 anys, tot i que segueixen creixent a partir de llavors. A més, els tuatares són animals molt longeus, arribant a viure més de 60 anys en estat salvatge. En captivitat poden arribar a superar els 100 anys d’edat.


Abans de l’arribada de l’home, els tuatares estaven presents a les dues illes principals de Nova Zelanda i en molts més illots. Quan els colons europeus van arribar, els tuatares ja només es trobaven a unes 32 petites illes. Es creu que la desaparició dels tuatares de les illes principals es deu principalment a la destrucció de l’hàbitat i a la introducció de mamífers foranis com les rates. Altres amenaces són la baixa diversitat genètica per l’aïllament de les diferents poblacions i el canvi climàtic, que pot afectar al sexe de la descendència.

Mapa de la distribució actual dels tuatares. Els quadrats corresponen a l’antiga espècie Sphenodon guntheri, ara considerada una població de S. punctatus.

Quan l’ésser humà arribà a les illes, es creu que el 80% de Nova Zelanda estava coberta de boscos. Amb l’arribada de les primeres tribus polinèsies cap a l’any 1250, començà la deforestació de més de la meitat de l’arxipèlag. Segle després, amb l’arribada dels europeus, aquesta deforestació s’intensificà encara més, fins a la situació actual, que només es conserva el 23% del bosc original.

Foto de Cliff d’una rata del Pacífic (Rattus exulans), una de les principals amenaces pels tuatares.

La introducció de mamífers foranis ha sigut un dels principals factors de declivi dels tuatares a l’actualitat, en especial la introducció de la rata del Pacífic (Rattus exulans). Aquest rosegador ha afectat a les poblacions, no només de tuatares, sinó també les de moltes espècies d’aus endèmiques de Nova Zelanda. En estudis de convivència entre les rates i els tuatares, s’ha observat que les rates, a més de depredar els ous i juvenils, també competeixen amb els tuatares adults pels recursos. Amb un cicle vital tant lent, els tuatares no poden recuperar-se d’aquest impacte.

Foto de Br3nda d’un tuatara reintroduït i marcat.

Tot i així, actualment els tuatares estàn classificat com sota “preocupació menor” a la llista roja de la IUCN. Això és gràcies als grans esforços de grups conservacionistes que han contribuït a la recuperació d’aquesta espècie. Una de les principals tasques ha estat la eliminació de la rata del Pacífic de les principals illes on habiten els tuatares. Per a això, es realitzà un esforç titànic en moltes illes en les que es van capturar poblacions senceres de tuatares per a la reproducció en captivitat, mentres s’eliminava a les rates d’aquests illots. Un cop eliminada la seva principal amenaça, tots els individus capturats i els seus descendents nascuts en captivitat van ser tornats als seus hàbitats naturals per a que poguéssin viure sense aquest ferotge competidor.

Vídeo de Carla Braun-Elwert, sobre l'èxit reproductor d’una vella parella de tuatares.

Actualment, la població salvatge de tuatares s’estima entre els 60.000 i els 100.000 individus. Es pot dir que aquest fòssil vivent, que va estar a punt de desaparèixer després de milions d’anys d’existència, va rebre una segona oportunitat per a seguir habitant les increïbles illes neozelandeses. Esperem que en el futur, poguem seguir disfrutant de l’existència d’aquest rèptils, únics supervivents d’un llinatge pràcticament extingit, per molts segles més.


S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:


Reptiles and mammals: same origin, different stories

Did mammals evolve from reptiles? The truth is they didn’t. Reptiles and mammals both have independent evolutionary histories that separated soon after the apparition of the so-called amniotic egg, which allowed the babies of these animals to be born outside of water. Previously, we talked about the origin of vertebrates and about how they managed to get out of the sea to start walking on land for the first time. In this entry we’ll explain how the ancestors of reptiles and mammals, the AMNIOTES, became independent of the aquatic medium and became the dominant land animals.


The characteristic that unites reptiles and mammals in the same group is the amniotic egg. While amphibian eggs are relatively small and only have one inner membrane, the eggs of amniotes are much bigger and present various membranes protecting the embryo and keeping it in an aqueous medium. The outer layer is the eggshell which, apart from offering physical protection to the embryo, prevents water loss and its porosity allows gas interchange. Beneath the eggshell we can find the next membranes:

512px-Crocodile_Egg_Diagram.svgDiagram of a crocodile egg: 1. eggshell 2. yolk sac 3. yolk (nutrients) 4. vessels 5. amnion 6. chorion 7. air 8. alantois 9. albumin (white of the egg) 10. amniotic sac 11. embryo 12. amniotic fluid. Image by Amelia P.
  • Chorion: The first inner membrane, which offers protection and, together with the amnion, forms the amniotic sac. Also, being in contact with the eggshell, it participates in gas interchange, bringing oxygen from the outside to the embryo and carbon dioxide from the embryo to the outside.
  • Amnion: Membrane that surrounds the embryo and constitutes a part of the amniotic sac. It offers an aqueous medium for the embryo and connects it with the yolk sac (a structure that brings food and that is also found in fish and amphibians).
  • Allantois: The third layer, it is used as a storage for nitrogen waste products, and together with the chorion, helps in gas interchange.
512px-Amphibian_Egg_Diagram.svgDiagram of an amphibian egg: 1. jelly capsule 2. vitelline membrane 3. perivitelline fluid 4. yolk 5. embryo. Image by Separe3g.

All these different kinds of membranes eliminate the need amphibians had of laying their eggs in water. Also, unlike amphibians, amniotes don’t go through a gilled larval stage, but are instead born as miniature adults, with lungs and legs (at least those that have them). All these made the first amniotes completely independent of the aquatic medium.


The first amniotes evolved around 312 million years ago from reptiliomorph tetrapods. At the end of the Carboniferous period lots of tropical forests where the great primitive amphibians lived disappeared, leaving a colder and drier climate. This ended with many of the big amphibians of that time, allowing the amniotes to occupy new habitats.

Solenodonsaurus1DBReconstruction of Solenodonsaurus janenschi, one of the candidates in being the first amniote, which lived around 320-305 million years ago in what is now the Czech Republic. Reconstruction by Dmitry Bogdanov.


These early amniotes had a series of characteristics that set them apart from their semiaquatic ancestors:

  • Horny claws (amphibians don’t have claws) and keratinized skin that prevents water loss.
  • Bigger large intestine and higher density of renal tubules to increase water reabsorption.
  • Specialized lacrimal glands and a third membrane in the eye (nictitating membrane) which keep the eye wet.
  • Larger lungs.
  • Loss of the lateral line (sensory organ present in fish and amphibians).

The skeleton and musculature also evolved offering better mobility and agility on a terrestrial medium. The first amniotes presented ribs that encircled their body converging at the sternum, making their inner organs more secure, and a series of muscular receptors offered them better agility and coordination during locomotion.


Traditionally, the different amniotes were classified based on the structure of their cranium. The characteristic used to classify them was the presence of temporal openings (fenestrae), by which we have three groups:

  • Anapsids (“no arches”): No temporal openings (turtles).
Skull_anapsida_1Diagram of an anapsid skull, by Preto(m).
  • Synapsids (“fused arches”): With only one temporal opening (mammals).
Skull_synapsida_1Diagram of a synapsid skull, by Preto(m).
  • Diapsids (“two arches”): With two temporal openings (reptiles, including birds).
Skull_diapsida_1Diagram of a diapsid skull, by Preto(m).

Previously it was believed that the first amniotes presented an anapsid skull (without openings, like turtles) and that subsequently they separated into synapsids and diapsids (the temporal openings formed “arches” that offered new anchor points for the jaw’s musculature). Yet, it has been discovered that this three-group classification is not valid.

Even though we still believe that the first amniotes were anapsid, it is currently known that these, soon after their apparition, separated into two different lineages: the synapsids (clade Synapsida) and the sauropsids (clade Sauropsida).


This lineage includes mammals and their amniote ancestors. Even though the first synapsids like Archaeothyris looked externally like lizards, they were more closely related to mammals, as they shared one temporal fenestrae where the jaw muscles passed through.

Archaeothyris.svgDrawing of the skull of Archaeothyris, which is thougth to be one of the first synapsids that lived around 306 million years ago in Nova Scotia. Drawing by Gretarsson.

The ancestors of mammals were previously known as “mammal-like reptiles”, as it was thought that mammals had evolved from primitive reptiles. Currently it’s accepted that synapsids form a different lineage independent of reptiles, and that they share a series of evolutionary trends that makes them closer to modern mammals: the apparition of different kinds of teeth, a mandible made of one single bone, the vertical posture of their limbs, etc…

Dimetrodon_grandisReconstruction of Dimetrodon grandis, one of the better known synapsids, from about 280 million years ago. Reconstruction by Dmitry Bogdanov.

Even though most modern mammals don’t lay eggs and give birth to live offspring, all groups maintain the amniote’s three characteristic membranes (amnion, chorion and allantois) during embryonic development.


Sauropsids include current reptiles and their amniote ancestors. Currently, in many scientific papers the word “sauropsid” is used instead of “reptile” when discussing phylogenies, as the sauropsids also includes birds. The first sauropsids were probably anapsids, and soon after their appearance they separated into two groups: the Parareptilia which conserved anapsid skull, and the Eureptilia which include the diapsids (current reptiles and birds).

Traditional_ReptiliaEvolutionary tree of current vertebrates, in which green color marks the groups previously included inside reptiles. As you can see, the traditional conception of "reptile" includes the ancestors of mammals and excludes birds. Image by Petter Bøckman.

Diapsids are currently the most diversified group of land vertebrates. They diversified greatly in the late Permian period (about 254 million years ago), just before the Mesozoic (the Age of Reptiles). These can be divided into two main groups: the Lepidsaurs and the Archosaurs, both with representatives in our days.


Lepidosaurs (literally “reptiles with scales”) appeared in the early Triassic (around 247 million years ago) and, even if most of them didn’t grow to big sizes, they are currently the largest group of non-avian reptiles. These are characterized by presenting a transversal cloacal slit, by having overlapping scales and shedding their skin whole or in patches and by other skeletal characters.

Rat_Snake_moulted_skinShed skin of a rat snake. Photo by Mylittlefinger.

The current lepidosaurs belong to one of two different orders:

  • Order Rhynchocephalia: That includes the two species of tuatara. Currently endangered, they are considered living fossils because they present skulls and characteristics similar to the Mesozoic diapsids.
Sphenodon_punctatus_(5)Photo of a tuatara (Sphenodon punctatus), by Tim Vickers.
  • Order Squamata: Current squamates include iguanas, chameleons, geckoes, skinks, snakes and other legless lizards. With more than 9000 living species, squamates are a large group with a wide array of adaptations and survival strategies.
Sin títuloPhotos of some squamates, from left to right and from top to bottom: Green iguana (Iguana iguana, by Cary Bass), king cobra (Ophiophaga Hannah, by Michael Allen Smith), Mexican mole lizard (Bipes biporus, by Marlin Harms) and Indian chameleon (Chamaeleo zeylanicus, by Shantanu Kuveskar).


Archosaurs (literally “ruling reptiles”) were the dominant group of land animals during the Mesozoic. These conquered all possible habitats until the extinction of most groups at the end of the Cretaceous period. Some of the extinct groups were the pseudosuchians (relatives of modern crocodiles, order Crocodylia), the pterosaurs (large flying reptiles) and the dinosaurs (excepting birds, clade Aves).

Massospondylus_Skull_Steveoc_86Drawing of the skull of the dinosaur Massospondylus in which we can see the different characteristic openings of diapsid archosaurs. Image by Steveoc 86.

As you see, both groups of modern archosaurs couldn’t be more different. Yet, crocodiles and birds share a common ancestor, and they are both more closely related with each other than with the rest of reptiles.

Yellow-billed_stork_kazingaPhoto of two species of modern arcosaurs: a Nile crocodile (Crocodylus niloticus) and a yellow-billed stork (Mycteria ibis). Photo by Tom Tarrant.


Turtles (order Testudines) have always been a group difficult to classify. Turtles are the only living amniotes with an anapsid skull, without any post-ocular opening. That’s why previously they had been classified as descendants of primitive amniotes (clade Anapsida, currently disused) or as primitive anapsid sauropsids (inside the Parareptilia clade)

KONICA MINOLTA DIGITAL CAMERASkeleton of the extinct tortoise Meiolania platyceps which lived in New Caledonia until 3000 years ago. In this photo it can be seen the compact cranium without openings. Photo by Fanny Schertzer.

Recent molecular studies have revealed that turtles are actually diapsids that lost their temporal openings secondarily. What still divides the scientific community is if testudines are more closely related to Lepidosauromorphs (lepidosaurs and their ancestors) or to Archosauromorphs (archosaurs and their ancestors).

Leopard_tortoiseIndividual leopard tortoise (Stigmochelys pardalis) from Tanzania. Photo by Charles J. Sharp.

As you have seen, the evolution of amniotes is an extremely complex matter. We hope that with this entry some concepts have been clarified:

  1. Mammals (synapsids) come from an evolutionary lineage different from that of reptiles (sauropsids).
  2. Sauropsids include traditional reptiles (lepidosaurs, archosaurs and turtes) and birds (inside archosaurs).
  3. There’s still so much to investigate about the placement of turtles (testudines) in the evolutionary tree of sauropsids.
Figure_29_04_03Modified diagram about the evolutionary relationships of the different amniote groups.


During the elaboration of this entry the following sources have been consulted:


Reptiles y mamíferos: mismo origen, diferentes historias

¿Los mamíferos evolucionaron de los reptiles? Pues la verdad es que no. Reptiles y mamíferos tienen historias evolutivas independientes que se separaron poco después de la aparición de lo que se conoce como huevo amniota, que permitía que las crías de estos animales nacieran fuera del agua. Anteriormente hablamos sobre el origen de los vertebrados y sobre cómo éstos salieron del mar para caminar por tierra por primera vez. En esta entrada explicaremos cómo los antepasados de reptiles y mamíferos, los AMNIOTAS, se independizaron del medio acuático y se convirtieron en el grupo dominante de animales terrestres.


La característica que une a reptiles y mamíferos en un solo grupo es el huevo amniota. Mientras que los huevos de los anfibios son relativamente pequeños y solo presentan una capa interna, los huevos de los amniotas son bastante más grandes y presentan varias membranas protegiendo al embrión y manteniéndolo en un medio acuoso. La capa más externa es la cáscara del huevo, que aparte de ofrecer protección física al embrión, evita la pérdida de agua y su porosidad permite el intercambio de gases.  Debajo de la cáscara encontramos las siguientes membranas:

512px-Crocodile_Egg_Diagram.svgEsquema del huevo de un cocodrilo: 1. cáscara del huevo 2. saco vitelino 3. vitelo (nutrientes) 4. vasos sanguíneos 5. amnios 6. corion 7. aire 8. alantoides 9. albúmina (clara del huevo) 10. saco amniótico 11. embrión 12. líquido amniótico. Imagen de Amelia P.
  • Corion: Es la primera membrana interna que encontramos, proporciona protección y, junto con el amnios, forman el saco amniótico. Además, al estar en contacto con la cáscara, participa en el intercambio de gases, llevando oxígeno del exterior al embrión y dióxido de carbono del embrión al exterior.
  • Amnios: Membrana que envuelve al embrión y forma parte del saco amniótico. Ésta proporciona un ambiente acuoso al embrión y lo conecta con el saco vitelino (estructura que proporciona alimento y que también encontramos en peces y anfibios).
  • Alantoides: La tercera capa, sirve como almacén de residuos nitrogenados y, junto con el corion, ayuda en el intercambio de gases.
512px-Amphibian_Egg_Diagram.svgEsquema del huevo de un anfibio: 1. cápsula gelatinosa 2. membrana vitelina 3. fluido perivitelino 4. vitelo 5. embrión. Imagen de Separe3g.

Este conjunto de membranas hace que los amniotas no tengan que volver al agua para poner los huevos. Además, a diferencia de los anfibios, los amniotas no pasan por la fase larvaria con branquias, sino que nacen directamente como adultos en miniatura, con pulmones y patas (los que tienen). Todo esto hizo que los primeros amniotas se independizaran completamente del medio acuático.


Los primeros amniotas evolucionaron hace unos 312 millones de años a partir de tetrápodos reptiliomorfos. A finales del Carbonífero desaparecieron muchos de los bosques tropicales donde vivían los anfibios primitivos, dando lugar a un clima más frío y árido. Esto acabó con muchos de los grandes anfibios del momento, dejando espacio para que los amniotas ocupasen los nuevos hábitats.

Solenodonsaurus1DBReconstrucción de Solenodonsaurus janenschi, uno de los candidatos a ser el primer amniota, que vivió hace 320-305 millones de años en la actual República Checa. Recontrucción de Dmitry Bogdanov.


Estos primeros amniotas presentaban un seguido de características que los diferenciaban de sus antepasados semiacuáticos:

  • Garras córneas (los anfibios no tienen garras) i piel queratinizada que reduce la pérdida de agua .
  • Intestino grueso más grande y mayor densidad de túbulos renales para aumentar la reabsorción de agua.
  • Glándulas lacrimales especializadas y una tercera membrana en el ojo (membrana nictitante) que mantienen la humedad ocular.
  • Pulmones más grandes.
  • Pérdida de la línea lateral (órgano sensorial presente en peces y anfibios).

El esqueleto y la musculatura también evolucionaron ofreciendo una mayor movilidad y agilidad en un hábitat terrestre. Los primeros amniotas presentaban las costillas cerradas por delante mediante el esternón, haciendo que sus órganos internos estuviesen mejor sujetos, y un conjunto de receptores musculares que les conferían una mayor agilidad y coordinación durante la locomoción.


Tradicionalmente, se clasificaban a los diferentes amniotas en base a la estructura de su cráneo. La característica que se miraba era la presencia de aperturas temporales (fenestras), según las cuáles teníamos tres grupos:

  • Anápsidos (“sin arcos”): No presentan ninguna apertura temporal (tortugas).
Skull_anapsida_1Esquema de un cráneo anápsido, de Preto(m).
  • Sinápsidos (“arcos fusionados”): Presentan una sola apertura temporal inferior (mamíferos).
Skull_synapsida_1Esquema de un cráneo sinápsido, de Preto(m).
  • Diápsidos (“dos arcos”): Presentan dos aperturas temporales (reptiles, incluyendo las aves).
Skull_diapsida_1Esquema de un cráneo diápsido, de Preto(m).

Antes se creía que los primeros amniotas presentaban un cráneo anápsido (sin oberturas, como las tortugas) y que posteriormente se separaron en sinápsidos y diápsidos (las aperturas temporales formaban unos “arcos” que proporcionaron nuevos puntos de anclaje para la musculatura mandibular). Aun así, se ha visto que esta clasificación en tres grupos no es válida.

Aunque aún se cree que los primeros amniotas eran anápsidos, actualmente se piensa que éstos, muy poco después de su aparición, se separaron en dos linajes diferentes: los sinápsidos (clado Synapsida) y los saurópsidos (clado Sauropsida).


Este linaje incluye a los mamíferos y a sus antepasados amniotas. Aunque los primeros sinápsidos como Archaeothyris externamente se parecieran a una lagartija, estaban más emparentados con los mamíferos y compartían con éstos la apertura temporal única por donde pasaban los músculos mandibulares.

Archaeothyris.svgDibujo del cráneo de Archaeothyris, el que se cree que fue uno de los primeros sinápsidos que vivió hace unos 306 millones de años en Nueva Escocia. Dibujo de Gretarsson.

Antes, los antepasados de los mamíferos eran conocidos como “reptiles mamiferoides”, ya que se creía que los mamíferos habían evolucionado de reptiles primitivos. Actualmente está aceptado que los sinápsidos forman un linaje independiente de los reptiles, y que comparten un seguido de tendencias evolutivas que llevan hasta los mamíferos modernos: la aparición de diferentes tipos de dientes, la mandíbula formada por un único hueso, la posición más vertical de las patas respecto el cuerpo, etc…

Dimetrodon_grandisReconstrucción de Dimetrodon grandis, uno de los sinápsidos más conocidos, de hace unos 280 millones de años. Reconstrucción de Dmitry Bogdanov.

Aunque la mayoría de mamíferos actuales no pone huevos y pare crías vivas, todos los grupos durante el desarrollo embrionario mantienen las tres membranas características de los amniotas (amnios, corion y alantoides).


Los saurópsidos incluyen a los reptiles actuales y a sus antepasados y parientes amniotas. Actualmente en muchos trabajos científicos se utiliza la palabra “saurópsido” en vez de “reptil” cuando se discute de filogenia, ya que dentro de saurópsido se incluye también a las aves. Los primeros saurópsidos probablemente eran anápsidos, y poco después de su aparición se separaron en dos grupos: los Parareptilia que conservaban el cráneo anápsido, y los Eureptilia que incluyen a los diápsidos (los reptiles y aves actuales).

Traditional_ReptiliaÁrbol evolutivo de los vertebrados actuales, en el que se marca en verde a los grupos antiguamente considerados reptiles. Como se ve, la concepción tradicional de "reptil" incluye a los antepasados de los mamíferos y excluye a las aves. Imagen de Petter Bøckman.

Los diápsidos actualmente son el grupo de vertebrados terrestres más diversificado. Éstos se multiplicaron en muchísimas especies a finales del Pérmico (hace unos 254 millones de años), justo antes del Mesozoico (la Era de los Reptiles). Éstos se pueden dividir en dos grandes grupos: los Lepidosaurios y los Arcosaurios, ambos con representantes actuales.


Los lepidosaurios (literalmente “reptiles con escamas”) aparecieron a principios del Triásico (hace unos 247 millones de años) y, aunque la mayoría no alcanzó tamaños muy grandes, actualmente son el grupo de reptiles no aviares más numeroso. Éstos se caracterizan por presentar una hendidura cloacal transversa, por presentar escamas superpuestas y mudar la piel entera o a trozos y por otros caracteres esqueléticos.

Rat_Snake_moulted_skinMuda entera de la piel de una serpiente rata. Foto de Mylittlefinger.

Los lepidosaurios actuales pertenecen a dos órdenes diferentes:

  • Orden Rhynchocephalia: Incluyen a las dos especies de tuataras actuales. Se consideran fósiles vivientes porque presentan cráneos y características parecidas a las de los diápsidos mesozoicos. Actualmente se encuentran en grave peligro de extinción.
Sphenodon_punctatus_(5)Foto de un tuatara (Sphenodon punctatus), de Tim Vickers.
  • Orden Squamata: Los escamosos actuales incluyen iguanas, camaleones, salamanquesas, lagartijas, serpientes y otros lagartos sin patas. Con más de 9000 especies actuales los escamosos son un grupo muy numeroso, con un gran abanico de adaptaciones y estrategias de supervivencia.
Sin títuloFotos de algunos escamosos de izquierda a derecha y de arriba a abajo: Iguana verde (Iguana iguana, de Cary Bass), cobra real (Ophiophaga Hannah, de Michael Allen Smith), lagarto gusano de dos patas (Bipes biporus, de Marlin Harms) y camaleón de la Índia (Chamaeleo zeylanicus, de Shantanu Kuveskar).


Los arcosaurios (literalmente “reptiles dominantes”) fueron el grupo de animales terrestres dominantes durante el Mesozoico. Éstos conquistaron todos los hábitats posibles hasta la extinción de la mayoría de grupos a finales del Cretácico. Algunos de los grupos que se extinguieron fueron los pseudosuquios (parientes de los cocodrilos actuales, orden Crocodylia), los pterosaurios (grandes reptiles voladores) y los dinosaurios (excepto las aves actuales, clado Aves).

Massospondylus_Skull_Steveoc_86Dibujo del cráneo del dinosaurio Massospondylus en el que se ven las diferentes oberturas que caracterizan a los arcosaurios diápsidos. Imagen de Steveoc 86.

Como podéis ver, los dos grupos de arcosaurios actuales no podrían ser más diferentes. Aun así, los cocodrilos y las aves comparten un antepasado común, y están más emparentados entre ellos que con el resto de reptiles.

Yellow-billed_stork_kazingaFoto de dos especies de arcosaurios actuales; un cocodrilo del Nilo (Crocodylus niloticus) y un tántalo africano (Mycteria ibis). Foto de Tom Tarrant.


Las tortugas (orden Testudines) siempre han sido un grupo difícil de clasificar. Las tortugas son los únicos amniotas actuales que presentan un cráneo anápsido, sin ninguna apertura post-ocular. Por eso, antiguamente se las había clasificado como descendientes de amniotas primitivos (clado Anapsida, actualmente en desuso) o como saurópsidos anápsidos primitivos (dentro del clado Parareptilia).

KONICA MINOLTA DIGITAL CAMERAEsqueleto de la tortuga extinta Meiolania platyceps que vivió en Nueva Caledonia hasta hace 3000 años. En esta foto se aprecia el cráneo compacto y sin oberturas temporales. Foto de Fanny Schertzer.

Estudios moleculares recientes han desvelado que las tortugas son realmente diápsidos que perdieron las aperturas temporales secundariamente. Lo que aún divide la comunidad científica es si los testudinios están más emparentados con los Lepidosauromorfos (lepidosaurios y sus antepasados) o con los Arcosauromorfos (arcosaurios y sus antepasados).

Leopard_tortoiseEjemplar de tortuga leopardo (Stigmochelys pardalis) de Tanzania. Foto de Charles J. Sharp.

Como habéis podido ver, la evolución de los amniotas es un tema muy complejo. Esperamos que con esta entrada haya quedado claro que:

  1. Los mamíferos (sinápsidos) provienen de un linaje evolutivo diferente al de los reptiles (saurópsidos).
  2. Los saurópsidos incluyen a los “reptiles” tradicionales (lepidosaurios, arcosaurios y tortugas) y a las aves (dentro de los arcosaurios).
  3. Aún queda mucho por investigar sobre la posición de las tortugas (testudinios) dentro del árbol evolutivo de los saurópsidos.
Figure_29_04_03Esquema modificado sobre las relaciones evolutivas entre los diferentes grupos de amniotas.


Para la elaboración de esta entrada se han utilizado las siguientes fuentes:


¿Cómo afectan la temperatura y el calentamiento global al sexo de los reptiles?

En la mayoría de animales el sexo de un individuo queda determinado en el momento de la fecundación; cuando el óvulo y el espermatozoide se fusionan queda fijado si ése animal será un macho o una hembra. Aún así, en muchos grupos de reptiles la determinación sexual viene determinada posteriormente durante la incubación, y el factor que la determina es la temperatura a la que se incuban los huevos. En los reptiles esto hace que, el ambiente juegue un papel crucial en determinar la proporción de machos y hembras que saldrán de una puesta y que por lo tanto, estos animales sean muy susceptibles a alteraciones en la temperatura causadas por ejemplo, por el calentamiento global.


En la mayoría de especies animales la diferenciación sexual (el desarrollo de ovarios o testículos) viene determinada genéticamente (DSG). En estos casos, el sexo de un individuo viene determinado por un cromosoma, un gen o un alelo concreto que provocará la diferenciación hacia un sexo u otro. Entre los vertebrados, existen dos tipos principales de DSG, el sistema XX/XY en mamíferos (en el que XX es una hembra y XY es un macho) y el ZW/ZZ en aves y algunos peces (ZW corresponde a una hembra y ZZ a un macho).

Types_of_sex_determinationEjemplos de diferentes tipos de determinación sexual genética en vertebrados e invertebrados, por CFCF.

En el caso de los reptiles, existe una gran variedad de mecanismos de determinación sexual. Algunos presentan modelos de DSG; muchas serpientes siguen el sistema ZW/ZZ y algunos lagartos el XX/XY. Igualmente, en muchos grupos el sexo de la descendencia viene determinado principalmente por la temperatura de incubación del huevo (DST), haciendo que el ambiente juegue un papel muy importante en la proporción de machos y hembras que encontramos en una población.

Eastern_Bearded_Dragon_defenceEl dragón barbudo del Este (Pogona barbata) es un ejemplo de reptil con DSG, pero al cual también le afecta la temperatura de incubación. Foto de Trent Townsend.

Aún así, los mecanismos de determinación sexual genética y de temperatura no son excluyentes. Los reptiles con DST tienen una base genética para la diferenciación ovárica o testicular que viene regulada por la temperatura. Igualmente, se ha observado que en reptiles con DSG, como el dragón barbudo australiano (Pogona barbata), las altas temperaturas durante la incubación provocan que individuos que genéticamente son machos (cromosomas ZZ) se desarrollen funcionalmente como hembras. Esto demuestra que en reptiles, no existe una división estricta entre la DSG y la DST.


El periodo de incubación durante el cual se determina el sexo de un individuo se llama periodo de incubación crítico y normalmente corresponde al segundo tercio del periodo de incubación, durante el cual la temperatura se ha de mantener constante. Este periodo de incubación crítico suele durar entre 7 y 15 días, según la especie. Después de este periodo el sexo del individuo normalmente no se puede revertir (mecanismo de todo o nada).

Audobon Zoo, New Orleans, LouisianaCría de dragón de komodo (Varanus komodoensis) eclosionando. Foto de Frank Peters.

La temperatura durante el periodo de incubación crítico altera la función de la aromatasa, hormona que convierte los andrógenos (hormonas masculinizadoras) en estrógenos (hormonas feminizadoras). A temperaturas que dan lugar a machos, la actividad de la aromatasa se inhibe, mientras que a temperaturas que dan lugar a hembras la actividad de la aromatasa se mantiene.

AromatassssssaGráficos de la actividad de la aromatasa respecto las hormonas gonadales en embriones de galápago europeo (Emys orbicularis) a 25oC (machos) y a 30oC (hembras) durante el periodo de incubación crítico, sacado de Pieau et al. 1999.

La DST la encontramos en todos los grupos de reptiles excepto en las serpientes (que siguen el sistema ZW/ZZ). En lagartos y tortugas encontramos tanto determinación sexual genético como por temperatura, mientras que en las tuataras y los cocodrilianos el sexo se determina exclusivamente por la temperatura. Actualmente, se conocen distintos modelos de determinación sexual por temperatura.


Este modelo es el más sencillo, en el que temperaturas de incubación más altas dan lugar a un sexo y temperaturas de incubación más bajas dan lugar al otro sexo. Temperaturas intermedias suelen dar individuos de ambos sexos y, muy raramente, individuos intersexuales. Este modelo está dividido en:

  • Modelo Ia DST: en el que los huevos incubados a temperaturas altas dan altos porcentajes de hembras y huevos a temperaturas bajas dan altos porcentajes de machos. Éste se encuentra en muchas especies de tortugas.
Emys_orbicularis_portraitFoto de galápago europeo (Emys orbicularis), especie que sigue el modelo Ia DST; a 25oC o menos de incubación sólo nacen machos, mientras que a 30oC o más sólo nacen hembras. Foto de Francesco Canu.
  • Modelo Ib DST: en el que pasa lo contrario; las altas temperaturas dan machos y las bajas temperaturas dan hembras. Éste se da en algunos lagartos con DST y los tuataras.
TuataraEl tuatara (Sphenodon punctatus) es uno de los reptiles que siguen el modelo Ib DST; la temperatura límite se encuentra entre 21-22oC, por encima de la cual nacerán machos y por debajo de la cual nacerán hembras.


Este modelo es un poco más complejo que el anterior. En éste, los embriones incubados a temperaturas extremas (muy altas o muy bajas) se diferenciarán hacia un sexo, mientras que los que sean incubados a temperaturas intermedias, se diferenciaran hacia el sexo contrario.

CrocnestFoto de aligátores del Mississippi (Alligator mississippiensis) de diferentes edades. Estos reptiles siguen el modelo II DST; a unos 34oC nacen machos, y a temperaturas por encima y por debajo, nacen hembras.

Este modelo se da en los cocodrilianos, en algunas tortugas y en muchos lagartos. Estudios filogenéticos recientes, indican que éste es el modelo de DST ancestral de los reptiles. Hay quien argumenta, que todos los casos de DST son del modelo II, pero que en la naturaleza nunca se llega a los dos extremos de temperatura, aunque esto aún está por demostrar.


Hoy en día aún no se entiende del todo las ventajas evolutivas de la determinación sexual por temperatura. El caso de los reptiles es muy curioso, ya que aves, mamíferos y anfibios determinan su sexo genéticamente en la mayoría de casos, mientras que en los reptiles encontramos un poco de todo.

Actualmente, se están realizando estudios para comprobar si algunas temperaturas favorecen la salud de los machos y algunas otras la de las hembras. En uno de estos estudios, se observó que las tortugas mordedoras incubadas a temperaturas intermedias (que producían tanto machos como hembras) eran más activas que las incubadas a temperaturas que daban un único sexo, haciendo que fuesen más vulnerables al ataque de depredadores que se guían visualmente. Aún así, en la actualidad no hay pruebas suficientes que indiquen hasta donde se podrían aplicar estos descubrimientos. Es posible que los reptiles con DST sean capaces de manipular el sexo de su descendencia, alterando la proporción de hormonas sexuales en base a la temperatura del lugar de nidificación.

Snapping_turtle_eggs_mdPuesta de tortuga mordedora (Chelydra serpentina), un quelonio americano de agua dulce. Foto de Moondigger.

Lo que resulta más fácil de predecir son los inconvenientes que comporta la DST. Cualquier cambio que se produzca en la temperatura de las áreas de nidificación puede afectar negativamente a la población de una especie determinada. Si se tala un bosque donde antes había sombra o se construyen edificios en una zona previamente soleada, cambiarán los microclimas de las puestas de huevos de cualquier reptil que nidifique allí.

El cambio global, o cambio climático, representa una amenaza adicional para los reptiles con DST. El aumento de la temperatura media del planeta y las fluctuaciones de temperatura de un año al otro, afectan al número de machos y hembras que nacen de algunas especies de reptiles. Este fenómeno se ha observado, por ejemplo, en las tortugas pintadas (Chrysemys picta), en las cuales se ha predicho que un aumento de 4oC en la temperatura de su hábitat provocaría la extinción de la especie, ya que sólo nacerían hembras.

baby-painted-turtle-chrysemys-pictaCría de tortuga pintada (Chrysemys picta), especie en la que temperaturas de incubación de entre 23-27oC dan machos y temperaturas por encima o por debajo dan hembras (modelo II). Foto de Cava Zachary.


Durante la elaboración de esta entrada se han utilizado las siguientes fuentes:


Com afecten la temperatura i l’escalfament global al sexe dels rèptils?

En la majoria d’animals el sexe d’un individu queda determinat en el moment de la fecundació; quan l’òvul i l’espermatozou es fusionen queda fixat si aquell animal serà un mascle o una femella. Tanmateix, en molts grups de rèptils la determinació sexual ve determinada posteriorment durant la incubació, i el factor que la determina és la temperatura a la qual s’incuben els ous. En els rèptils això fa que, l’ambient jugui un paper crucial en determinar la proporció de mascles i femelles que sortiran d’una posta i que per tant, aquests animals siguin molt susceptibles a alteracions en la temperatura causades per exemple, per l’escalfament global.


En la majoria d’espècies animals, la diferenciació sexual (el desenvolupament de ovaris o testicles) ve determinada genèticament (DSG). En aquests casos, el sexe d’un individu ve determinat per un cromosoma, un gen o un al·lel concret que provocarà la diferenciació cap a un sexe o un altre. Entre els vertebrats, existeixen dos tipus principals de DSG, el sistema XX/XY en mamífers (en que XX és una femella i XY és un mascle) i el ZW/ZZ en aus i alguns peixos (ZW correspon a una femella i ZZ a un mascle).

Types_of_sex_determinationExemples de diferents tipus de determinació sexual genètica en vertebrats i invertebrats, per CFCF.

En el cas dels rèptils, existeix una gran varietat de mecanismes de determinació sexual. Alguns presenten models de DSG; moltes serps segueixen el sistema ZW/ZZ i alguns llangardaixos el XX/XY. Tanmateix, en molts grups el sexe de la descendència ve determinat principalment per la temperatura d’incubació de l’ou (DST), fent que l’ambient jugui un paper molt important en la proporció de mascles i femelles que trobem en una població.

Eastern_Bearded_Dragon_defenceEl drac barbut de l’est (Pogona barbata) és un exemple de rèptil amb DSG, però al qual també li afecta la temperatura d’incubació. Foto de Trent Townsend.

Tot i així, els mecanismes de determinació sexual genètic i de temperatura no són excloents. Els rèptils amb DST tenen una base genètica per a la diferenciació ovàrica o testicular que ve regulada per la temperatura. Igualment, s’ha observat que en rèptils amb DSG, com ara el drac barbut australià (Pogona barbata), les altes temperatures durant la incubació fan que individus que genèticament són mascles (cromosomes ZZ) es desenvolupin funcionalment com a femelles. Això demostra que en els rèptils, no existeix una divisió estricta entre la DSG i la DST.


El període d’incubació durant el qual es determina el sexe d’un individu s’anomena període d’incubació crític i normalment correspon al segon terç del període d’incubació, durant el qual la temperatura s’ha de mantenir constant. Aquest període d’incubació crític sol durar entre 7 i 15 dies, segons l’espècie. Després d’aquest període, el sexe de l’individu normalment no es pot revertir (mecanisme de tot o res).

Audobon Zoo, New Orleans, Louisiana
Cria de dragó de komodo (Varanus komodoensis) eclosionant. Foto de Frank Peters.

La temperatura durant el període d’incubació crític altera la funció de l’aromatasa, hormona que converteix els andrògens (hormones masculinitzadores) en estrògens (hormones feminitzadores). A temperatures que donen mascles, l’activitat de l’aromatasa s’inhibeix, mentre que a temperatures que donen femelles l’activitat de l’aromatasa es manté.

AromatassssssaGràfics de l’activitat de l’aromatasa respecte les hormones gonadals en embrions de tortuga d’estany (Emys orbicularis) a 25oC (mascles) i a 30oC (femelles) durant el període d’incubació crític, tret de Pieau et al. 1999.

La DST la trobem en tots els grups de rèptils excepte en les serps (que segueixen el sistema ZW/ZZ). En llangardaixos i tortugues hi trobem tant determinació sexual genètica com per temperatura, mentre que en les tuatares i els crocodilians el sexe es determina exclusivament per la temperatura. Actualment, es coneixen diferents models de determinació sexual per temperatura.


Aquest model és el més senzill, en el que temperatures d’incubació més altes donen lloc a un sexe i temperatures d’incubació més baixes donen lloc a l’altre. Temperatures intermèdies solen donar individus d’ambdós sexes i, molt rarament, a individus intersexes. Aquest model està dividit en:

  • Model Ia DST: en el que ous incubats a temperatures altes donen alts percentatges de femelles i ous a temperatures baixes donen alts percentatges de mascles. Aquest es troba present en moltes espècies de tortugues.
Emys_orbicularis_portraitFoto d’una tortuga d’estany (Emys orbicularis), espècie que segueix el model Ia DST; a 25oC o menys d’incubació només neixen mascles, mentre que a 30oC o més només neixen femelles. Foto de Francesco Canu.
  • Model Ib DST: on passa el contrari; les altes temperatures donen mascles i les baixes temperatures donen femelles. Aquest es dona en alguns llangardaixos amb DST i les tuatares.
TuataraEl tuatara (Sphenodon punctatus) és un dels rèptils que segueixen el model Ib DST; la temperatura límit es troba entre 21-22oC, per sobre de la qual naixeran mascles i per sota de la qual naixeran femelles.


Aquest model és una mica més complex que l’anterior. En aquest, els embrions incubats a temperatures extremes (molt altes o molt baixes) es diferenciaran a un sexe, mentre que els que siguin incubats a temperatures intermèdies, es diferenciaran al sexe contrari.

CrocnestFoto d’al·ligàtors del Mississippí (Alligator mississippiensis) de diferents edats. Aquests rèptils segueixen el model II DST; a uns 34oC neixen mascles, i a temperatures per sobre i per sota, neixen femelles.

Aquest model es dóna en els crocodilians, en algunes tortugues i en molts llangardaixos. Estudis filogenètics recents, indiquen que aquest és el model de DST ancestral dels rèptils. Hi ha qui argumenta, que tots els casos de DST són de model II, però que en la naturalesa mai s’arriba als dos extrems de temperatura, tot i que això encara està per demostrar.


Avui dia encara no s’entén del tot els avantatges evolutius de la determinació sexual per temperatura. El cas dels rèptils és molt curiós, ja que aus, mamífers i amfibis determinen el sexe genèticament en la majoria de casos, mentre que en els rèptils hi trobem una mica de tot.

Actualment, s’estan realitzant estudis per comprovar si algunes temperatures afavoreixen la salut dels mascles i algunes altres la de les femelles. En un d’aquests estudis, s’observà que les tortugues mossegadores incubades a temperatures intermèdies (que produïen tant mascles com femelles) eren més actives que les incubades a temperatures que donaven un sol sexe, fent que fossin més vulnerables a l’atac de depredadors que es guien visualment. Tot i així, en l’actualitat no hi ha proves suficients que indiquin fins a on es podrien aplicar aquests descobriments. És possible que els rèptils amb DST siguin capaços de manipular el sexe de la seva descendència, alterant la proporció d’hormones sexuals en base a la temperatura del lloc de nidificació.

Snapping_turtle_eggs_mdPosta de tortuga mossegadora (Chelydra serpentina), un queloni americà d’aigua dolça. Foto de Moondigger.

El que és més fàcil de predir són els inconvenients que comporta la DST. Qualsevol canvi que es produeixi en la temperatura de les àrees de nidificació pot afectar negativament a la població d’una espècie determinada. Si es tala un bosc on abans hi havia ombra o es construeixen edificis en una zona prèviament assolellada, canviaran els microclimes de les postes d’ous de qualsevol rèptil que nidifiqui allà.

El canvi global, o canvi climàtic, representa una amenaça addicional per als rèptils amb DST. L’augment de la temperatura mitja del planeta i les fluctuacions de temperatura d’un any a l’altre, afecten al nombre de mascles i femelles que neixen d’algunes espècies de rèptils. Aquest fenomen s’ha observat, per exemple, en les tortugues pintades (Chrysemys picta), en les quals s’ha predit que un augment de 4oC en la temperatura del seu hàbitat provocaria l’extinció de l’espècie, ja que només naixerien femelles.

baby-painted-turtle-chrysemys-pictaCria de tortuga pintada (Chrysemys picta), espècie en la que temperatures d’incubació d’entre 23-27oC donen mascles i temperatures per sobre o per sota donen femelles (model II). Foto de Cava Zachary.


Durant l’elaboració d’aquesta entrada s’han utilitzat les següents fonts: