Arxiu d'etiquetes: testudines

Shell evolution with just four fossil turtles

Turtles are charming animals yet, while they look cute to most people, they’ve been racking the brains of palaeontologists for decades. The combination of apparently primitive features and an extremely specialized anatomy, has made the reconstruction of the origin and evolution of these reptiles a nearly impossible task. In this entry we’ll try to get a general idea about the evolution of one of the most striking characteristics of turtles (the shell) with only four examples of primitive “turtles”.

CURRENT AND EXTINCT RELATIVES

As we explained in an earlier entry, the origin of turtles is still debated among the scientific community. Turtles show some anatomic characteristics not found among any current vertebrate, which makes their phylogenetic origin confusing. One of the characteristics that has puzzled palaeontologist more is their skull.

caretta_carettazz-min
Skull of a loggerhead sea turtle (Caretta caretta) in which we can see the lack of temporal openings. Photo by David Stang.

While the rest of reptiles are diapsid (they present a pair of temporal openings at each side of the skull), turtles present a typically anapsid cranium (without any temporal openings). Yet, recent genomic studies have proved that it’s more likely that testudines (order Testudines, current turtles) descend from a diapsid ancestor and that through their evolution they reverted back to the primitive anapsid form. What is not so clear is if turtles are more closely related to lepidosaurs (lizards, snakes and tuataras) or to archosaurs (crocodiles and birds). The most accepted hypothesis is the second one.

Even if the origins of the testudines are still somewhat mysterious, most palaeontologists coincide in that they belong to the clade Pantestudines, which groups all those species more closely related to turtles than to any other animal. A group of reptiles that are also found inside the pantestudines are the sauropterygians like plesiosaurs and placodonts.

plesiosaurus_3db-min
Reconstruction by Dmitry Bogdanov of the sauropterygian Plesiosaurus, a distant relative of turtles.

EVOLUTION OF TESTUDINES

The rest of pantestudines help us to form an image of how turtles acquired such a specialized anatomy. But first, take a look at some of the characteristics of turtles:

  • A shell made up of two parts: the upper shell (carapace) which comes from the fusion of the vertebrae and the dorsal ribs and the lower shell (plastron) that originates from ventral ribs called “gastralia” (still present in some current reptiles).
  • While the rest of vertebrates present the scapula over their ribs, the turtle’s ribs (their carapace) cover the scapula.
  • The ability to hide their heads and limbs in their shells.
  • The absence of teeth; having instead horny ridges in their jaws.

As we’ll see, these characteristics were acquired very gradually.

8374089715_ed63b95c7d_o-min
The carapace of a dead turtle, in which we can see how the ribs fuse with the vertebrae to form the shell. Photo by Fritz Flohr Reynolds.

Even if their relationship with turtles isn’t still very clear, Eunotosaurus africanus is the most ancient candidate to being a turtle’s relative. Eunotosaurus was a fossorial animal that lived 260 million years ago in South Africa. This animal had very wide dorsal ribs which contacted each other, which is thought to have served as an anchoring point for powerful leg muscles, used while digging. Also, similarly to current turtles, Eunotosaurus had lost the intercostal muscles and presented a reorganization of the respiratory musculature.

eunotosaurus-min
Fossil of Eunotosaurus, in which the characteristically wide ribs can be seen. Photo by Flowcomm.

The oldest indisputable relative of turtles is Pappochelys rosiane from Germany (240 million years ago). The name “Pappochelys” literally means “grandfather turtle” as, before the discovery of Eunotosaurus it was the oldest turtle relative. Just like Eunotosaurus, it presented wide dorsal ribs in contact with each other. Also, its ventral ribs were already wider and thicker and its scapular girdle was placed below the dorsal ribs.

pappo_skelett
Drawing by Rainer Schoch of the skeleton of Pappochelys in which we can see some of its characteristics. It is believed that Pappochelys was a semiaquatic animal that swam with the aid of its long tail.

The next step in the evolution of turtles is found 220 million years ago, during the late Triassic in China. Its name is Odontochely semitestacea, which means “toothed turtle with half a shell”. This name is due to the fact that, unlike true turtles, Odontochelys still had a mouth full of teeth and it only presented the lower half of the shell, the plastron. Even if it also had thick dorsal ribs, only paleontological proofs of the plastron have been found. Odontochelys was discovered in freshwater deposits, leads us to believe that at first it only developed the plastron to protect itself from predators attacking from below.

odontochelys_bw-min
Reconstruction by Nobu Tamura of Odontochelys semitestacea. It’s not considered to be a true turtle due to the fact that it only had half a shell.

The first testudine known to possess a complete shell is Proganochelys quenstedti from the Triassic period, 210 million years ago. It already presented many characteristics found in current turtles: the shell was completely formed, with carapace and plastron, its skull was anapsid looking and it had no teeth. However, Proganochelys wasn’t able to retract its head and legs inside its shell (even if this may be because of the horns it had). It also presented two extra shell pieces at both sides, which probably served to protect its legs.

proganochelys_model-min
Reconstruction of Proganochelys from the Museum am Lowentor of Stuttgart. Photo by Ghedoghedo.

PRESENT DAY TURTLES

The order Testudines as we know it, appeared around 190 million years ago, during the Jurassic period. These current turtles are classified into two different suborders, which both separated quickly at the beginning of the evolution of testudines:

Suborder Pleurodira: This suborder is the smallest one as it only contains three current families, all native from the southern hemisphere. The main characteristic is the form in which they retract their neck laterally inside their shell, which leaves the neck exposed and makes the cervical vertebrae present a characteristic shape (Pleurodira roughly means “side neck”). Also, pleurodirans present 13 scutes in their plastrons.

chelodina_longicollis_1-min
Photo by Ian Sutton of an eastern long-necked turtle (Chelodina longicollis), a typical pleurodiran.

Suborder Cryptodira: Cryptodirans comprise most turtles. While pleurodirans only include freshwater species (as the testudines common ancestor is thought to be), criptodirans include freshwater terrapins, terrestrial tortoises and sea turtles. Apart from only presenting between 11 and 12 scutes in their plastrons, their principal characteristic is the ability to retract their neck and to hide their heads completely in their shell (Cryptodira roughly means “hidden neck”). Cryptodirans are found in practically all the continents and oceans (except in the coldest habitats).

alabama_red-bellied_turtle_us_fws_cropped-min
Photo of an Alabama red-bellied turtle (Pseudemys alabamensis) by the U.S. Fish and Wildlife Service. In this photo we can see how cryptodirans hide their heads.

Even if there still are some questions to be answered about the evolution of turtles, we hope that with this little introduction to some of the most characteristic fossil “turtles”, you have had an overall view about how turtles got their shells. Whatever their origins are, we hope that the apparition of men isn’t what puts an end to the history of this group of slow but steady creatures.

REFERENCES

The following sources have been consulted during the elaboration of this entry:

difusio-angles

Evolució de la closca amb només quatre tortugues fòssils

Les tortugues són animals simpàtics que, tot i que resulten adorables per a la majoria de gent, porten de cap als paleontòlegs des de fa molt de temps. La combinació de característiques considerades primitives amb una anatomia especialment derivada, ha fet que l’origen i evolució d’aquests rèptils hagin sigut quasi impossibles de reconstruir. En aquesta entrada intentarem fer-nos una idea sobre com es va desenvolupar una de les principals característiques de les tortugues (la closca) amb només quatre exemples de “tortugues” primitives.

PARENTS ACTUALS I EXTINGITS

Com ja vam explicar en una entrada anterior, l’origen dels testudinis encara és tema de debat dins la comunitat científica. Les tortugues presenten algunes característiques anatòmiques úniques entre els vertebrats actuals que fan que es pugui confondre el seu origen filogenètic. Una de les característiques que més ha confós als paleontòlegs és el seu crani.

caretta_carettazz-min
Crani de tortuga careta (Caretta caretta) en el que podem veure la manca d’obertures temporals. Foto de David Stang.

Mentre que la resta de rèptils són diàpsids (presenten dues obertures temporals a cada costat del crani), les tortugues presenten un crani típicament anàpsid (sense cap obertura temporal). Tot i així, estudis genòmics recents han demostrat que molt probablement els testudinis (ordre Testudines, les tortugues actuals) descendeixen d’un avantpassat amb un crani i que al llarg de la seva evolució van revertir a la forma anàpsida primitiva. El que no està tant clar és si les tortugues estan més emparentades amb els lepidosaures (llangardaixos, serps i tuàtares) o amb els arcosaures (cocodrils i aus). La hipòtesi més acceptada és la segona.

Tot i que els origens dels testudinis encara són una mica misteriosos, la majoria de paleontòlegs coincideixen en que aquests es troben dins del clade Pantestudines, el qual agrupa a totes aquelles espècies més emparentades amb les tortugues que amb qualsevol altre animal. Un grup de rèptils que també es troben dins dels pantestudins són els sauropterigis com els plesiosaures i els placodonts.

plesiosaurus_3db-min
Reconstrucció de Dmitry Bogdanov del sauropterigi Plesiosaurus, un parent llunyà de les tortugues.

EVOLUCIÓ DELS TESTUDINIS

La resta de pantestudins ens ajuden a formar una imatge de com les tortugues van adquirir una anatomia tant especialitzada. Però primer, mirem algunes de les característiques de les tortugues:

  • Una closca formada per dues parts: la meitat dorsal (espàldar) que prové de la fusió de les vèrtebres i les costelles dorsals i la meitat ventral (plastró) que prové de unes costelles ventrals anomenades “gastralia” (presents en alguns rèptils actuals).
  • Mentre que la resta de vertebrats presentem l’escàpula per sobre les costelles, les costelles de les tortugues (la seva closca) es troben cobrint l’escàpula.
  • La habilitat d’amagar el cap i les potes dins la closca.
  • La absència de dents; en canvi presenten becs còrnis.

Com veurem, la adquisició d’aquestes característiques es va donar molt gradualment.

8374089715_ed63b95c7d_o-min
Espàldar d’una tortuga morta, on veiem com les costelles es fusionen amb les vèrtebres per a formar la closca. Foto de Fritz Flohr Reynolds.

Tot i que encara no està clar la seva relació exacta amb les tortugues, Eunotosaurus africanus és el candidat a parent de les tortugues més antic. El Eunotosaurus era un animal fossorial que visqué fa 260 milions d’anys a Sudàfrica. Aquest animal tenia unes costelles dorsals molt amples i en contacte amb elles, cosa que es creu que servia de punt d’anclatge per als potents músculs de les potes davanteres, utilitzats mentre excavava. A més, de forma semblant a les tortugues actuals, Eunotosaurus havia perdut els músculs intercostals i presentava una reorganització de la musculatura respiratòria.

eunotosaurus-min
Fòssil de Eunotosaurus, on s’aprecien les costelles amples característiques. Foto de Flowcomm.

El parent indiscutible més antic de les tortugues és Pappochelys rosinae d’Alemanya (fa 240 milions d’anys). El nom “Pappochelys” vol dir literalment “tortuga avi”, ja que abans del descobriment de Eunotosaurus era el parent més antic d’aquestes. Igual que Eunotosaurus, presentava les costelles dorsals amples i en contacte entre elles. A més, les seves costelles ventrals ja eren més amples i gruixudes i la seva cintura escapular es situava sota les costelles dorsals.

pappo_skelett
Dibuix de Rainer Schoch de l’esquelet de Pappochelys on es poden veure algunes de les seves característiques. Es creu que Pappochelys era un animal semiaquàtic que nedava impulsat per la seva llarga cua.

El següent pas en l’evolució de les tortugues el trobem fa 220 milions d’anys, a la segona meitat del Triàssic de Xina. El seu nom és Odontochelys semitestacea, cosa que vol dir “tortuga dentada amb mitja closca”. Aquest nom es dèu al fet que, a diferència de les tortugues autèntiques, Odontochelys tenia una boca amb dents i només presentava la part ventral de la closca, el plastró. Tot i que també tenia les costelles dorsals amples, només s’han trobat proves de la presència de plastró. Odontochelys va ser descobert en dipòsits d’aigua dolça, de manera que sembla plausible que desenvolupés primer un plastró per protegir-se de depredadors que l’ataquéssin de sota.

odontochelys_bw-min
Reconstrucció de Nobu Tamura d’Odontochelys semitestacea. El fet de que només presentés mitja closca fa que no se’l consideri una tortuga autèntica.

El primer conegut testudini amb una closca completa és Proganochelys quenstedti del Triàssic, fa 210 milions d’anys. Aquest ja presentava moltes de les característiques de les tortugues actuals: la closca estava completament formada, amb espàldar i plastró, el seu crani era de configuració anàpsida i no presentava dents. No obstant això, Proganochelys no era capaç d’amagar el cap i les potes dins de la closca (tot i que això potser es devia a les banyes que presentava). A més, presentava dues peces de la closca extra als costats d’aquesta, que probablement servien per protegir les potes.

proganochelys_model-min
Reconstrucció de Proganochelys del Museum am Lowentor de Stuttgart. Foto de Ghedoghedo.

TORTUGUES D’AVUI EN DIA

L’ordre dels Testudines tal i com els coneixem avui, va aparèixer fa uns 190 milions d’anys, durant el Juràssic. Aquestes tortugues actuals es classifiquen en dos subordres diferents, els quals es van separar molt ràpidament al principi de l’evolució dels testudinis:

Subordre Pleurodira: Aquest subordre és el més petit ja que només conté tres famílies actuals, totes natives de l’hemisferi sud. La principal característica és la forma en que amaguen el cap lateralment a dins la closca, cosa que fa que part del coll quedi exposat i que les vèrtebres cervicals tinguin una forma característica (Pleurodira vol dir aproximadament, “coll de costat”). A més, els pleurodirs presenten 13 escuts al plastró.

chelodina_longicollis_1-min
Foto d’Ian Sutton d’una tortuga de coll de serp australiana (Chelodina longicollis), un pleurodir típic.

Subordre Cryptodira: Els criptodirs comprenen a la gran majoria de tortugues. Mentre que els pleurodirs només presenten espècies d’aigua dolça (com es creu que era l’avantpassat comú dels testudinis), els criptodirs inclouen espècies aquàtiques, però també terrestres i marines. Apart de presentar només entre 11 i 12 escuts als plastró, la seva característica principal és la capacitat de retraure el coll i per tant amagar el cap completament dins la closca (Criptodira vol dir aproximadament, “coll amagat”). Els criptodirs es troben pràcticament a tots els continents i a tots els oceans (excepte en els hàbitats més freds).

alabama_red-bellied_turtle_us_fws_cropped-min
Tortuga de ventre vermell d’Alabama (Pseudemys alabamensis), de la U.S. Fish and Wildlife Service. En aquesta foto veiem com amaguen el cap els criptodirs.

Tot i que encara queden preguntes per respondre sobre l’evolució de les tortugues, esperem que amb aquesta petita introducció a algunes de les “tortugues” fòssils més característiques us hàgiu fet una idea de com les tortugues van aconseguir la closca. Siguin quins siguin els seus orígens, esperem que l’aparició de l’home no sigui el que posi fi a la història d’aquest grup d’animals lent però constant.

REFERÈNCIES

Durant l’elaboració d’aquesta entrada s’han consultat les següent fonts:

difusio-catala

Evolución del caparazón con sólo cuatro tortugas fósiles

Las tortugas son animales simpáticos que, aunque resultan adorables para la mayoría de gente, llevan de cabeza a los paleontólogos desde hace décadas. La combinación de características consideradas primitivas con una anatomía especialmente derivada, ha hecho que el origen y la evolución de estos reptiles hayan sido casi imposibles de reconstruir. En esta entrada intentaremos hacernos una idea sobre cómo se desarrolló una de las principales características de las tortugas (el caparazón) con sólo cuatro ejemplos de “tortugas” primitivas.

PARIENTES ACTUALES Y EXTINTOS

Como ya explicamos en una entrada anterior, el origen de los testudinos aún es tema de debate en la comunidad científica. Las tortugas presentan algunas características anatómicas únicas entre los vertebrados actuales que hacen que se pueda confundir su origen filogenético. Una de las características que más ha confundido a los paleontólogos es su cráneo.

caretta_carettazz-min
Cráneo de tortuga boba (Caretta caretta) en el que podemos ver la falta de aperturas temporales. Foto de David Stang.

Mientras que el resto de reptiles son diápsidos (presentan dos aperturas temporales a cada lado del cráneo), las tortugas presentan un cráneo típicamente anápsido (sin ninguna apertura temporal). Aun así, estudios genómicos recientes han demostrado que muy probablemente los testudinios (orden Testudines, las tortugas actuales) descienden de un antepasado con un cráneo diápsido y que a lo largo de su evolución revertieron a la forma anápsida primitiva. Lo que no está muy claro es si las tortugas están más emparentadas con los lepidosaurios (lagartos, serpientes y tuataras) o con los arcosaurios (cocodrilos y aves). La hipótesis más aceptada es la segunda.

Aunque los orígenes de los testudinos aún son un poco misteriosos, la mayoría de paleontólogos coinciden en que éstos se hallan dentro del clado Pantestudines, el cuál agrupa a todas esas especies más emparentadas con las tortugas que con cualquier otro animal. Un grupo de reptiles que también se encuentran dentro de los pantestudinos son los sauropterigios como los plesiosaurios y los placodontos.

plesiosaurus_3db-min
Reconstrucción de Dmitry Bogdanov del sauropterigio Plesiosaurus, un pariente lejano de las tortugas.

EVOLUCIÓN DE LOS TESTUDINOS

El resto de pantestudinos nos ayudan a formar una imagen de cómo las tortugas adquirieron una anatomía tan especializada. Pero primero, miremos algunas de las características de las tortugas:

  • Un caparazón formado por dos partes: la mitad dorsal (espáldar) que proviene de la fusión de las vértebras y las costillas dorsales y la mitad ventral (plastrón) que proviene de unas costillas ventrales llamadas “gastralia” (presentes en algunos reptiles actuales).
  • Mientras que el resto de vertebrados presentamos la escápula por encima de las costillas, las costillas de las tortugas (su caparazón) se encuentran cubriendo la escápula.
  • La habilidad de esconder la cabeza y las patas dentro del caparazón.
  • La ausencia de dientes; en su lugar presentan picos córneos.

Como veremos, la adquisición de estas características se dio muy gradualmente.

8374089715_ed63b95c7d_o-min
Espáldar de una tortuga muerta, donde vemos como las costillas se fusionan con las vértebras para formar el caparazón. Foto de Fritz Flohr Reynolds.

Aunque aún no está clara su relación exacta con las tortugas, Eunotosaurus africanus es el candidato a pariente de las tortugas más antiguo. El Eunotosaurus era un animal fosorial que vivió hace 260 millones de años en Sudáfrica. Este animal tenía unas costillas dorsales muy anchas y en contacto entre ellas, cosa que se cree que servía de punto de anclaje para los potentes músculos de las patas delanteras, utilizados mientras cavaba. Además, de manera similar a las tortugas actuales, Eunotosaurus había perdido los músculos intercostales y presentaba una reorganización de la musculatura respiratoria.

eunotosaurus-min
Fósil de Eunotosaurus, donde se aprecia las costillas anchas características. Foto de Flowcomm.

El pariente indiscutible más antiguo de las tortugas es Pappochelys rosinae de Alemania (hace unos 240 millones de años). El nombre “Pappochelys” significa literalmente “tortuga abuela”, ya que antes del descubrimiento de Eunotosaurus era el pariente más antiguo de éstas. Igual que Eunotosaurus, presentaba costillas dorsales anchas y en contacto entre ellas. Además, sus costillas ventrales ya eran más anchas y gruesas y su cintura escapular se situaba bajo las costillas dorsales.

pappo_skelett
Dibujo de Rainer Schoch del esqueleto de Pappochelys donde se pueden ver algunas de sus características. Se cree que Pappochelys era un animal semiacuático que nadaba impulsado por su larga cola.

El siguiente paso en la evolución de las tortugas lo encontramos hace 220 millones de años, en la segunda mitad del Triásico de China. Su nombre es Odontochelys semitestacea, cosa que significa “tortuga dentada con medio caparazón”. Este nombre se debe al hecho que, a diferencia de las tortugas auténticas, Odontochelys tenía una boca con dientes y sólo presentaba la parte ventral del caparazón, el plastrón. Aunque también tenía costillas dorsales anchas, sólo se han encontrado pruebas de la presencia de plastrón. Odontochelys fue descubierto en depósitos de agua dulce, de manera que parece plausible que desarrollara primero el plastrón para protegerse de depredadores que lo atacaran por debajo.

odontochelys_bw-min
Reconstrucción de Nobu Tamura de Odontochelys semitestacea. El hecho de que sólo presentara medio caparazón hace que no se lo considere una tortuga auténtica.

El primer testudino conocido con un caparazón completo es Proganochelys guenstedti del Triásico, hace 210 millones de años. Éste ya presentaba muchas características de las tortugas actuales: el caparazón estaba completamente formado, con espáldar y plastrón, su cráneo era de configuración anápsida y no presentaba dientes. No obstante, Proganochelys no era capaz de esconder la cabeza y las patas en su caparazón (aunque esto quizás se debía a los cuernos que presentaba). Además, presentaba dos piezas del caparazón extra a los lados de éste, que probablemente servían para proteger las patas.

proganochelys_model-min
Reconstrucción de Proganochelys del Museum am Lowentor de Stuttgart. Foto de Ghedoghedo.

TORTUGAS DE HOY EN DÍA

El orden de los Testudines tal y como los conocemos hoy, aparecieron hace unos 190 millones de años, durante el Jurásico. Estas tortugas actuales se clasifican en dos subórdenes diferentes, los cuáles se separaron muy rápidamente al principio de la evolución de los testudinos:

Suborden Pleurodira: Este suborden es el más pequeño ya que sólo contiene tres familias actuales, todas nativas del hemisferio sur. La principal característica es la forma en que esconden la cabeza lateralmente dentro de su caparazón, cosa que hace que parte del cuello quede expuesto y que las vértebras cervicales tengan una forma característica (Pleurodira significa aproximadamente, “cuello de lado”). Además los pleurodiros presentan 13 escudos en el plastrón.

chelodina_longicollis_1-min
Foto de Ian Sutton de una tortuga de cuello de serpiente australiana (Chelodina longicollis), un pleurodiro típico.

Suborden Cryptodira: Los criptodiros comprenden a la gran mayoría de tortugas. Mientras que los pleurodiros sólo presentan especies de agua dulce (como se cree que era el antepasado común de los testudinos), los criptodiros incluyen especies acuáticas, pero también terrestres y marinas. Aparte de presentar sólo entre 11 y 12 escudos en el plastrón, su característica principal es la capacidad de retraer el cuello y por lo tanto esconder la cabeza completamente dentro del caparazón (Criptodira significa aproximadamente, “cuello escondido”). Los criptodiros se encuentran prácticamente en todos los continentes y en todos los océanos (excepto en los hábitats más fríos).

alabama_red-bellied_turtle_us_fws_cropped-min
Tortuga de vientre rojo de Alabama (Pseudemys alabamensis), de la U.S. Fish and Wildlife Service. En esta foto vemos cómo esconden la cabeza los criptodiros.

Aunque aún quedan preguntas por responder sobre la evolución de las tortugas, esperemos que con esta pequeña introducción a algunas de las “tortugas” fósiles más características os hayáis hecho una idea de cómo las tortugas consiguieron su caparazón. Sean cuales sean sus orígenes, esperemos que la aparición del hombre no sea el que ponga fin a la historia de este grupo de animales lento pero constante.

REFERENCIAS

Durante la elaboración de esta entrada se han consultado las siguientes fuentes:

difusio-castella

Rèptils i mamífers: mateix origen, diferents històries

Els mamífers van evolucionar dels rèptils? Doncs la veritat és que no. Rèptils i mamífers tenen històries evolutives independents que es van separar poc després de l’aparició de l’anomenat ou amniota, que permetia que les cries d’aquests animals nasquéssin fora de l’aigua. Anteriorment vam parlar sobre l’origen dels vertebrats, i sobre com aquests van sortir del mar per a caminar per terra per primer cop. En aquesta entrada explicarem com els avantpassats de rèptils i mamífers, els AMNIOTES, van independitzar-se del medi aquàtic i van convertir-se en el grup dominant d’animals terrestres.

L’OU AMNIOTA

La característica que uneix a rèptils i mamífers en un sol grup és l’ou amniota. Mentre que els ous dels amfibis són relativament petits i només presenten una capa interna, els ous dels amniotes són força més grans i presenten vàries membranes protegint l’embrió i mantenint-lo en un medi aquós. La capa més externa és la closca de l’ou, que apart d’oferir protección física a l’embrió, evita la pèrdua d’aigua i la seva porositat permet l’intercanvi de gasos. Sota la closca hi trobem les següents membranes:

512px-Crocodile_Egg_Diagram.svgEsquema de l’ou d’un cocodril: 1. closca de l’ou 2. sac vitel·lí 3. vitel (nutrients) 4. vasos sanguinis 5. amni 6. cori 7. aire 8. alantoide 9. albúmina (clara de l’ou) 10. sac amniòtic 11. embrió 12. líquid amniòtic. Imatge de Amelia P.
  • Cori: És la primera membrana interna que trobem, proporciona protecció i, juntament amb l’amni, formen el sac amniòtic. A més, al estar en contacte amb la closca, participa en l’intercanvi de gasos, portant oxígen de l’exterior a l’embrió i diòxid de carboni de l’embrió a l’exterior.
  • Amni: Membrana que envolta l’embrió i forma la part interna del sac amniòtic. Aquesta proporciona un ambient aquós a l’embrió, i el connecta amb el sac vitel·lí (estructura que proporciona aliment i que també es troba en peixos i amfibis).
  • Alantoide: La tercera capa, serveix com a magatzem de residus nitrogenats, i juntament amb el cori ajuda en l’intercanvi de gasos.
512px-Amphibian_Egg_Diagram.svgEsquema de l’ou d’un amfibi: 1. càpsula gelatinosa 2. membrana vitel·lina 3. fluid perivitel·lí 4. vitel 5. embrió. Imatge de Separe3g.

Aquest seguit de membranes fan que els amniotes no hagin de tornar a l’aigua per a pondre els ous. A més, a diferència dels amfibis, els amniotes no passen per la fase larvària amb brànquies, sinó que neixen directament com a adults en miniatura, amb pulmons i potes (els que en tenen). Tot això va fer que els primers amniotes s’independitzéssin completament del medi aquàtic.

ORIGEN DELS AMNIOTES

Les primers amniotes van evolucionar fa uns 312 milions d’anys a partir de tetràpodes reptiliomorfs. A finals del Carbonífer van desaparèixer molts dels boscos tropicals on vivien els amfibis primitius, deixant lloc a un clima més fred i àrid. Això va acabar amb molts dels grans amfibis de l’época, deixant espai per a que els amniotes ocupéssin els nous hàbitats.

Solenodonsaurus1DBReconstrucció de Solenodonsaurus janenschi, un dels candidats a ser el primer amniota, que visqué fa 320-305 milions d’anys a l’actual República Txeca. Recontrucció de Dmitry Bogdanov.

CARACTERÍSTIQUES

Aquests primers amniotes presentaven un seguit  de característiques que els diferenciaven dels seus avantpassats semiaquàtics:

  • Urpes còrnies (els amfibis no tenen urpes) i pell queratinitzada que redueix la pèrdua d’aigua.
  • Intestí gruixut més gran i major densitat de túbuls renals, per augmentar la reabsorció d’aigua.
  • Glàndules llacrimals especialitzades i una tercera membrana a l’ull (membrana nictitant) que mantenen la humitat ocular.
  • Pulmons més grans.
  • Pèrdua de la línia lateral (òrgan sensorial present en peixos i amfibis).

L’esquelet i la musculatura també van evolucionar oferint una major movilitat i agilitat en un hàbitat terrestre. Els primers amniotes presentaven les costelles tancades per davant mitjançant l’esternó, fent que els seus òrgans interns estiguéssin més ben subjectats, i un seguit de receptors musculars els conferien una major agilitat i coordinació durant la locomoció.

CRANIS AMNIOTES

Tradicionalment, es classificaven els diferents amniotes en base a l’estructura del seu crani. La característica que es mirava era la presència de obertures temporals (fenestres), segons les quals teníem tres grups:

  • Anàpsids (“sense arcs”): No presenten cap obertura temporal (tortugues).
Skull_anapsida_1Esquema d’un crani anàpsid, de Preto(m).
  • Sinàpsids (“arcs fusionats”): Presenten una sola obertura temporal inferior (mamífers).
Skull_synapsida_1Esquema d’un crani sinàpsid, de Preto(m).
  • Diàpsids (“dos arcs”): Presenten dues obertures temporals (rèptils, incloent les aus).
Skull_diapsida_1Esquema d’un crani diàpsid, de Preto(m).

Abans es creia que els primers amniotes presentaven un crani anàpsid (sense obertures, com les tortugues) i que posteriorment es van separar els sinàpsids i els diàpsids (les obertures temporals formaven uns “arcs” que proporcionaren nous punts d’anclatge per la musculatura mandibular). Tanmateix, s’ha vist que aquesta classificació en tres grups no és vàlida.

Tot i que encara es creu que els primers amniotes eren anàpsids, actualment es pensa que aquests, molt poc després de la seva aparició, es van separar en dos llinatges diferents: els sinàpsids (clade Synapsida) i els sauròpsids (clade Sauropsida).

SYNAPSIDA

Aquest llinatge inclou als mamífers i als seus avantpassats amniotes. Tot i que els primers sinàpsids com Archaeothyris externament s’assemblessin a una sargantana, estaven més emparentats amb els mamífers i compartien amb aquests l’obertura temporal única per on passaven els músculs mandibulars.

Archaeothyris.svgDibuix del crani de Archaeothyris, el que es creu que va ser un dels primers sinàpsids que visqué fa uns 306 milions d’anys a Nova Escòcia. Dibuix de Gretarsson.

Als avantpassats dels mamífers abans se’ls coneixia com a “rèptils mamiferoides”, ja que es creia que els mamífers havien evolucionat de rèptils primitius. Actualment és acceptat que els sinàpsids formen un llinatge independent dels rèptils, i que comparteixen un seguit de tendències evolutives que porten fins als mamífers moderns: l’aparició de diferents tipus de dents, la mandíbula formada per un únic os, la posició més vertical de les potes respecte el cos, etc…

Dimetrodon_grandisReconstrucció de Dimetrodon grandis, un dels sinàpsids més coneguts, de fa uns 280 milions d’anys. Reconstrucció de Dmitry Bogdanov.

Tot i que la majoria de mamífers actuals no pon ous i pareix a les cries vives, tots els grups durant el desenvolupament embrionari mantenen les tres membranes característiques dels amniotes (amni, cori i alantoide).

SAUROPSIDA

Els sauròpsids inclouen als rèptils actuals i als seus avantpassats i parents amniotes. Actualment en molts treballs científics s’utilitza la paraula “sauròpsid” en lloc de “rèptil” quan es discuteix de filogènia, ja que dins de sauròpsid s’inclou també a les aus. Els primers sauròpsids probablement eren anàpsids, i poc després de la seva aparició es van separar en dos grups: els Parareptilia que conservaven el crani anàpsid, i els Eureptilia que inclouen als diàpsids (els rèptils i aus actuals).

Traditional_ReptiliaArbre evolutiu dels vertebrats actuals, on es marca de color verd als grups antigament considerats rèptils. Com es veu, la concepció tradicional de “rèptil” inclou als avantpassats dels mamífers i exclou a les aus. Imatge de Petter Bøckman.

Els diàpsids actualment són el grup de vertebrats terrestres més diversificat. Aquests es van multiplicar en moltíssimes espècies a finals del Pèrmic (fa uns 254 milions d’anys), just abans del Mesozoic (l’Era dels Rèptils). Aquests es poden dividir en dos grans grups: els Lepidosaures i els Arcosaures, ambdós amb representants actuals.

LEPIDOSAURIA: PETITS I NOMBROSOS

Els lepidosaures (literalment “rèptils amb escates”) van aparèixer a principis del Triàssic (fa uns 247 milions d’anys) i, tot i que la majoria no van assolir grans mides, actualment són el grup de rèptils no aviaris més nombrós. Aquests es caracteritzen per presentar una escletxa cloacal transversal, per presentar escates sobreposades i mudar la pell sencera o a trossos i per altres caràcters esquelètics.

Rat_Snake_moulted_skinMuda sencera de la pell d’una serp rata. Foto de Mylittlefinger.

Els lepidosaures actuals pertanyen a dos ordres diferents:

  • Ordre Rhynchocephalia: Inclouen a les dues espècies de tuatares actuals. Es consideren fòssils vivents perquè presenten cranis i característiques semblants a les dels diàpsids mesozoics i actualmente es troben en greu perill d’extinció.
Sphenodon_punctatus_(5)Foto d’una tuatara (Sphenodon punctatus), de Tim Vickers.
  • Ordre Squamata: Els escamosos actuals inclouen iguanes, camaleons, dragons, sargantanes, serps i altres llangardaixos sense potes. Amb més de 9000 espècies actuales els escamosos són un grup molt nombrós, amb un gran ventall d’adaptacions i estratègies de supervivencia.
Sin títuloFotos d’alguns escamosos d’esquerra a dreta i de dalt a baix: Iguana verda (Iguana iguana, de Cary Bass), cobra reial (Ophiophaga Hannah, de Michael Allen Smith), llangardaix cuc de dues potes (Bipes biporus, de Marlin Harms) i camaleó de l’Índia (Chamaeleo zeylanicus, de Shantanu Kuveskar).

ARCHOSAURIA: ANTICS REIS

Els arcosaures (literalment “rèptils dominants”) van ser el grup d’animals terrestres dominants durant el Mesozoic. Aquests van conquistar tots els habitats possibles fins a l’extinció de la majoria de grups a finals del Cretàcic. Alguns dels grups que es van extingir són els pseudosuquis (parents dels cocodrils actuals, ordre Crocodylia), els pterosaures (grans rèptils voladors) i els dinosaures (excepte els ocells actuals, clade Aves).

Massospondylus_Skull_Steveoc_86Dibuix del crani del dinosaure Massospondylus en el que es veuen les diferents obertures que caracteritzen als arcosaures diàpsids. Imatge de Steveoc 86.

Com podeu veure, els dos grups d’arcosaures actuals no podrien ser més diferents. Tanmateix, els cocodrils i les aus comparteixen un avantpassat comú, i estan més emparentats entre ells que amb la resta de rèptils.

Yellow-billed_stork_kazingaFoto de dues espècies d’arcosaures actuals; un cocodril del Nil (Crocodylus niloticus) i un tàntal africà (Mycteria ibis). Foto de Tom Tarrant.

I LES TORTUGUES?

Les tortugues (ordre Testudines) sempre han estat un grup difícil de classificar. Les tortugues són els únics amniotes actuals que presenten un crani anàpsid, sense cap obertura post-ocular. Per això antigament, se les havia classificat com a descendents d’amniotes primitius (clade Anapsida, actualment en desús) o com a sauròpsids anàpsids primitius (dins del clade Parareptilia).

KONICA MINOLTA DIGITAL CAMERAEsquelet de la tortuga extingida Meiolania platyceps que visqué a Nova Caledònia fins fa 3000 anys. En aquesta foto s’aprecia el crani compacte i sense obertures temporals. Foto de Fanny Schertzer.

Estudis moleculars recents, han desvelat que les tortugues són realment diàpsids que van perdre les obertures temporals secundàriament. El que encara divideix a la comunitat científica és si els testudinis están més emparentats amb els Lepidosauromorfs (lepidosaures i els seus avantpassats) o amb els Arcosauromorfs (arcosaures i els seus avantpassats).

Leopard_tortoiseExemplar de tortuga lleopard (Stigmochelys pardalis) de Tanzània. Foto de Charles J. Sharp.

Com heu pogut veure, l’evolució dels amniotes és un tema molt complex. Esperem que amb aquesta entrada hagi quedat clar que:

  1. Els mamífers (sinàpsids) provenen d’un llinatge evolutiu diferent al dels rèptils (sauròpsids).
  2. Els sauròpsids inclouen als “rèptils” tradicionals (lepidosaures, arcosaures i tortugues) i a les aus (dins dels arcosaures).
  3. Encara queda molt per investigar sobre la posición de les tortugues (testudinis) dins l’arbre evolutiu dels sauròpsids.
Figure_29_04_03Esquema modificat sobre les relacions evolutives entre els diferents grups d’amniotes.

REFERÈNCIES

Per a l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Difusió-català

Reptiles and mammals: same origin, different stories

Did mammals evolve from reptiles? The truth is they didn’t. Reptiles and mammals both have independent evolutionary histories that separated soon after the apparition of the so-called amniotic egg, which allowed the babies of these animals to be born outside of water. Previously, we talked about the origin of vertebrates and about how they managed to get out of the sea to start walking on land for the first time. In this entry we’ll explain how the ancestors of reptiles and mammals, the AMNIOTES, became independent of the aquatic medium and became the dominant land animals.

THE AMNIOTIC EGG

The characteristic that unites reptiles and mammals in the same group is the amniotic egg. While amphibian eggs are relatively small and only have one inner membrane, the eggs of amniotes are much bigger and present various membranes protecting the embryo and keeping it in an aqueous medium. The outer layer is the eggshell which, apart from offering physical protection to the embryo, prevents water loss and its porosity allows gas interchange. Beneath the eggshell we can find the next membranes:

512px-Crocodile_Egg_Diagram.svgDiagram of a crocodile egg: 1. eggshell 2. yolk sac 3. yolk (nutrients) 4. vessels 5. amnion 6. chorion 7. air 8. alantois 9. albumin (white of the egg) 10. amniotic sac 11. embryo 12. amniotic fluid. Image by Amelia P.
  • Chorion: The first inner membrane, which offers protection and, together with the amnion, forms the amniotic sac. Also, being in contact with the eggshell, it participates in gas interchange, bringing oxygen from the outside to the embryo and carbon dioxide from the embryo to the outside.
  • Amnion: Membrane that surrounds the embryo and constitutes a part of the amniotic sac. It offers an aqueous medium for the embryo and connects it with the yolk sac (a structure that brings food and that is also found in fish and amphibians).
  • Allantois: The third layer, it is used as a storage for nitrogen waste products, and together with the chorion, helps in gas interchange.
512px-Amphibian_Egg_Diagram.svgDiagram of an amphibian egg: 1. jelly capsule 2. vitelline membrane 3. perivitelline fluid 4. yolk 5. embryo. Image by Separe3g.

All these different kinds of membranes eliminate the need amphibians had of laying their eggs in water. Also, unlike amphibians, amniotes don’t go through a gilled larval stage, but are instead born as miniature adults, with lungs and legs (at least those that have them). All these made the first amniotes completely independent of the aquatic medium.

AMNIOTE ORIGINS

The first amniotes evolved around 312 million years ago from reptiliomorph tetrapods. At the end of the Carboniferous period lots of tropical forests where the great primitive amphibians lived disappeared, leaving a colder and drier climate. This ended with many of the big amphibians of that time, allowing the amniotes to occupy new habitats.

Solenodonsaurus1DBReconstruction of Solenodonsaurus janenschi, one of the candidates in being the first amniote, which lived around 320-305 million years ago in what is now the Czech Republic. Reconstruction by Dmitry Bogdanov.

CHARACTERISTICS

These early amniotes had a series of characteristics that set them apart from their semiaquatic ancestors:

  • Horny claws (amphibians don’t have claws) and keratinized skin that prevents water loss.
  • Bigger large intestine and higher density of renal tubules to increase water reabsorption.
  • Specialized lacrimal glands and a third membrane in the eye (nictitating membrane) which keep the eye wet.
  • Larger lungs.
  • Loss of the lateral line (sensory organ present in fish and amphibians).

The skeleton and musculature also evolved offering better mobility and agility on a terrestrial medium. The first amniotes presented ribs that encircled their body converging at the sternum, making their inner organs more secure, and a series of muscular receptors offered them better agility and coordination during locomotion.

AMNIOTE SKULLS

Traditionally, the different amniotes were classified based on the structure of their cranium. The characteristic used to classify them was the presence of temporal openings (fenestrae), by which we have three groups:

  • Anapsids (“no arches”): No temporal openings (turtles).
Skull_anapsida_1Diagram of an anapsid skull, by Preto(m).
  • Synapsids (“fused arches”): With only one temporal opening (mammals).
Skull_synapsida_1Diagram of a synapsid skull, by Preto(m).
  • Diapsids (“two arches”): With two temporal openings (reptiles, including birds).
Skull_diapsida_1Diagram of a diapsid skull, by Preto(m).

Previously it was believed that the first amniotes presented an anapsid skull (without openings, like turtles) and that subsequently they separated into synapsids and diapsids (the temporal openings formed “arches” that offered new anchor points for the jaw’s musculature). Yet, it has been discovered that this three-group classification is not valid.

Even though we still believe that the first amniotes were anapsid, it is currently known that these, soon after their apparition, separated into two different lineages: the synapsids (clade Synapsida) and the sauropsids (clade Sauropsida).

SYNAPSIDA

This lineage includes mammals and their amniote ancestors. Even though the first synapsids like Archaeothyris looked externally like lizards, they were more closely related to mammals, as they shared one temporal fenestrae where the jaw muscles passed through.

Archaeothyris.svgDrawing of the skull of Archaeothyris, which is thougth to be one of the first synapsids that lived around 306 million years ago in Nova Scotia. Drawing by Gretarsson.

The ancestors of mammals were previously known as “mammal-like reptiles”, as it was thought that mammals had evolved from primitive reptiles. Currently it’s accepted that synapsids form a different lineage independent of reptiles, and that they share a series of evolutionary trends that makes them closer to modern mammals: the apparition of different kinds of teeth, a mandible made of one single bone, the vertical posture of their limbs, etc…

Dimetrodon_grandisReconstruction of Dimetrodon grandis, one of the better known synapsids, from about 280 million years ago. Reconstruction by Dmitry Bogdanov.

Even though most modern mammals don’t lay eggs and give birth to live offspring, all groups maintain the amniote’s three characteristic membranes (amnion, chorion and allantois) during embryonic development.

SAUROPSIDA

Sauropsids include current reptiles and their amniote ancestors. Currently, in many scientific papers the word “sauropsid” is used instead of “reptile” when discussing phylogenies, as the sauropsids also includes birds. The first sauropsids were probably anapsids, and soon after their appearance they separated into two groups: the Parareptilia which conserved anapsid skull, and the Eureptilia which include the diapsids (current reptiles and birds).

Traditional_ReptiliaEvolutionary tree of current vertebrates, in which green color marks the groups previously included inside reptiles. As you can see, the traditional conception of "reptile" includes the ancestors of mammals and excludes birds. Image by Petter Bøckman.

Diapsids are currently the most diversified group of land vertebrates. They diversified greatly in the late Permian period (about 254 million years ago), just before the Mesozoic (the Age of Reptiles). These can be divided into two main groups: the Lepidsaurs and the Archosaurs, both with representatives in our days.

LEPIDOSAURIA: SMALL AND PLENTIFUL

Lepidosaurs (literally “reptiles with scales”) appeared in the early Triassic (around 247 million years ago) and, even if most of them didn’t grow to big sizes, they are currently the largest group of non-avian reptiles. These are characterized by presenting a transversal cloacal slit, by having overlapping scales and shedding their skin whole or in patches and by other skeletal characters.

Rat_Snake_moulted_skinShed skin of a rat snake. Photo by Mylittlefinger.

The current lepidosaurs belong to one of two different orders:

  • Order Rhynchocephalia: That includes the two species of tuatara. Currently endangered, they are considered living fossils because they present skulls and characteristics similar to the Mesozoic diapsids.
Sphenodon_punctatus_(5)Photo of a tuatara (Sphenodon punctatus), by Tim Vickers.
  • Order Squamata: Current squamates include iguanas, chameleons, geckoes, skinks, snakes and other legless lizards. With more than 9000 living species, squamates are a large group with a wide array of adaptations and survival strategies.
Sin títuloPhotos of some squamates, from left to right and from top to bottom: Green iguana (Iguana iguana, by Cary Bass), king cobra (Ophiophaga Hannah, by Michael Allen Smith), Mexican mole lizard (Bipes biporus, by Marlin Harms) and Indian chameleon (Chamaeleo zeylanicus, by Shantanu Kuveskar).

ARCHOSAURIA: ANCIENT KINGS

Archosaurs (literally “ruling reptiles”) were the dominant group of land animals during the Mesozoic. These conquered all possible habitats until the extinction of most groups at the end of the Cretaceous period. Some of the extinct groups were the pseudosuchians (relatives of modern crocodiles, order Crocodylia), the pterosaurs (large flying reptiles) and the dinosaurs (excepting birds, clade Aves).

Massospondylus_Skull_Steveoc_86Drawing of the skull of the dinosaur Massospondylus in which we can see the different characteristic openings of diapsid archosaurs. Image by Steveoc 86.

As you see, both groups of modern archosaurs couldn’t be more different. Yet, crocodiles and birds share a common ancestor, and they are both more closely related with each other than with the rest of reptiles.

Yellow-billed_stork_kazingaPhoto of two species of modern arcosaurs: a Nile crocodile (Crocodylus niloticus) and a yellow-billed stork (Mycteria ibis). Photo by Tom Tarrant.

AND WHAT ABOUT TURTLES?

Turtles (order Testudines) have always been a group difficult to classify. Turtles are the only living amniotes with an anapsid skull, without any post-ocular opening. That’s why previously they had been classified as descendants of primitive amniotes (clade Anapsida, currently disused) or as primitive anapsid sauropsids (inside the Parareptilia clade)

KONICA MINOLTA DIGITAL CAMERASkeleton of the extinct tortoise Meiolania platyceps which lived in New Caledonia until 3000 years ago. In this photo it can be seen the compact cranium without openings. Photo by Fanny Schertzer.

Recent molecular studies have revealed that turtles are actually diapsids that lost their temporal openings secondarily. What still divides the scientific community is if testudines are more closely related to Lepidosauromorphs (lepidosaurs and their ancestors) or to Archosauromorphs (archosaurs and their ancestors).

Leopard_tortoiseIndividual leopard tortoise (Stigmochelys pardalis) from Tanzania. Photo by Charles J. Sharp.

As you have seen, the evolution of amniotes is an extremely complex matter. We hope that with this entry some concepts have been clarified:

  1. Mammals (synapsids) come from an evolutionary lineage different from that of reptiles (sauropsids).
  2. Sauropsids include traditional reptiles (lepidosaurs, archosaurs and turtes) and birds (inside archosaurs).
  3. There’s still so much to investigate about the placement of turtles (testudines) in the evolutionary tree of sauropsids.
Figure_29_04_03Modified diagram about the evolutionary relationships of the different amniote groups.

REFERENCES

During the elaboration of this entry the following sources have been consulted:

Difusió-anglès

Reptiles y mamíferos: mismo origen, diferentes historias

¿Los mamíferos evolucionaron de los reptiles? Pues la verdad es que no. Reptiles y mamíferos tienen historias evolutivas independientes que se separaron poco después de la aparición de lo que se conoce como huevo amniota, que permitía que las crías de estos animales nacieran fuera del agua. Anteriormente hablamos sobre el origen de los vertebrados y sobre cómo éstos salieron del mar para caminar por tierra por primera vez. En esta entrada explicaremos cómo los antepasados de reptiles y mamíferos, los AMNIOTAS, se independizaron del medio acuático y se convirtieron en el grupo dominante de animales terrestres.

EL HUEVO AMNIOTA

La característica que une a reptiles y mamíferos en un solo grupo es el huevo amniota. Mientras que los huevos de los anfibios son relativamente pequeños y solo presentan una capa interna, los huevos de los amniotas son bastante más grandes y presentan varias membranas protegiendo al embrión y manteniéndolo en un medio acuoso. La capa más externa es la cáscara del huevo, que aparte de ofrecer protección física al embrión, evita la pérdida de agua y su porosidad permite el intercambio de gases.  Debajo de la cáscara encontramos las siguientes membranas:

512px-Crocodile_Egg_Diagram.svgEsquema del huevo de un cocodrilo: 1. cáscara del huevo 2. saco vitelino 3. vitelo (nutrientes) 4. vasos sanguíneos 5. amnios 6. corion 7. aire 8. alantoides 9. albúmina (clara del huevo) 10. saco amniótico 11. embrión 12. líquido amniótico. Imagen de Amelia P.
  • Corion: Es la primera membrana interna que encontramos, proporciona protección y, junto con el amnios, forman el saco amniótico. Además, al estar en contacto con la cáscara, participa en el intercambio de gases, llevando oxígeno del exterior al embrión y dióxido de carbono del embrión al exterior.
  • Amnios: Membrana que envuelve al embrión y forma parte del saco amniótico. Ésta proporciona un ambiente acuoso al embrión y lo conecta con el saco vitelino (estructura que proporciona alimento y que también encontramos en peces y anfibios).
  • Alantoides: La tercera capa, sirve como almacén de residuos nitrogenados y, junto con el corion, ayuda en el intercambio de gases.
512px-Amphibian_Egg_Diagram.svgEsquema del huevo de un anfibio: 1. cápsula gelatinosa 2. membrana vitelina 3. fluido perivitelino 4. vitelo 5. embrión. Imagen de Separe3g.

Este conjunto de membranas hace que los amniotas no tengan que volver al agua para poner los huevos. Además, a diferencia de los anfibios, los amniotas no pasan por la fase larvaria con branquias, sino que nacen directamente como adultos en miniatura, con pulmones y patas (los que tienen). Todo esto hizo que los primeros amniotas se independizaran completamente del medio acuático.

ORÍGEN DE LOS AMNIOTAS

Los primeros amniotas evolucionaron hace unos 312 millones de años a partir de tetrápodos reptiliomorfos. A finales del Carbonífero desaparecieron muchos de los bosques tropicales donde vivían los anfibios primitivos, dando lugar a un clima más frío y árido. Esto acabó con muchos de los grandes anfibios del momento, dejando espacio para que los amniotas ocupasen los nuevos hábitats.

Solenodonsaurus1DBReconstrucción de Solenodonsaurus janenschi, uno de los candidatos a ser el primer amniota, que vivió hace 320-305 millones de años en la actual República Checa. Recontrucción de Dmitry Bogdanov.

CARACTERÍSTICAS

Estos primeros amniotas presentaban un seguido de características que los diferenciaban de sus antepasados semiacuáticos:

  • Garras córneas (los anfibios no tienen garras) i piel queratinizada que reduce la pérdida de agua .
  • Intestino grueso más grande y mayor densidad de túbulos renales para aumentar la reabsorción de agua.
  • Glándulas lacrimales especializadas y una tercera membrana en el ojo (membrana nictitante) que mantienen la humedad ocular.
  • Pulmones más grandes.
  • Pérdida de la línea lateral (órgano sensorial presente en peces y anfibios).

El esqueleto y la musculatura también evolucionaron ofreciendo una mayor movilidad y agilidad en un hábitat terrestre. Los primeros amniotas presentaban las costillas cerradas por delante mediante el esternón, haciendo que sus órganos internos estuviesen mejor sujetos, y un conjunto de receptores musculares que les conferían una mayor agilidad y coordinación durante la locomoción.

CRÁNEOS AMNIOTAS

Tradicionalmente, se clasificaban a los diferentes amniotas en base a la estructura de su cráneo. La característica que se miraba era la presencia de aperturas temporales (fenestras), según las cuáles teníamos tres grupos:

  • Anápsidos (“sin arcos”): No presentan ninguna apertura temporal (tortugas).
Skull_anapsida_1Esquema de un cráneo anápsido, de Preto(m).
  • Sinápsidos (“arcos fusionados”): Presentan una sola apertura temporal inferior (mamíferos).
Skull_synapsida_1Esquema de un cráneo sinápsido, de Preto(m).
  • Diápsidos (“dos arcos”): Presentan dos aperturas temporales (reptiles, incluyendo las aves).
Skull_diapsida_1Esquema de un cráneo diápsido, de Preto(m).

Antes se creía que los primeros amniotas presentaban un cráneo anápsido (sin oberturas, como las tortugas) y que posteriormente se separaron en sinápsidos y diápsidos (las aperturas temporales formaban unos “arcos” que proporcionaron nuevos puntos de anclaje para la musculatura mandibular). Aun así, se ha visto que esta clasificación en tres grupos no es válida.

Aunque aún se cree que los primeros amniotas eran anápsidos, actualmente se piensa que éstos, muy poco después de su aparición, se separaron en dos linajes diferentes: los sinápsidos (clado Synapsida) y los saurópsidos (clado Sauropsida).

SYNAPSIDA

Este linaje incluye a los mamíferos y a sus antepasados amniotas. Aunque los primeros sinápsidos como Archaeothyris externamente se parecieran a una lagartija, estaban más emparentados con los mamíferos y compartían con éstos la apertura temporal única por donde pasaban los músculos mandibulares.

Archaeothyris.svgDibujo del cráneo de Archaeothyris, el que se cree que fue uno de los primeros sinápsidos que vivió hace unos 306 millones de años en Nueva Escocia. Dibujo de Gretarsson.

Antes, los antepasados de los mamíferos eran conocidos como “reptiles mamiferoides”, ya que se creía que los mamíferos habían evolucionado de reptiles primitivos. Actualmente está aceptado que los sinápsidos forman un linaje independiente de los reptiles, y que comparten un seguido de tendencias evolutivas que llevan hasta los mamíferos modernos: la aparición de diferentes tipos de dientes, la mandíbula formada por un único hueso, la posición más vertical de las patas respecto el cuerpo, etc…

Dimetrodon_grandisReconstrucción de Dimetrodon grandis, uno de los sinápsidos más conocidos, de hace unos 280 millones de años. Reconstrucción de Dmitry Bogdanov.

Aunque la mayoría de mamíferos actuales no pone huevos y pare crías vivas, todos los grupos durante el desarrollo embrionario mantienen las tres membranas características de los amniotas (amnios, corion y alantoides).

SAUROPSIDA

Los saurópsidos incluyen a los reptiles actuales y a sus antepasados y parientes amniotas. Actualmente en muchos trabajos científicos se utiliza la palabra “saurópsido” en vez de “reptil” cuando se discute de filogenia, ya que dentro de saurópsido se incluye también a las aves. Los primeros saurópsidos probablemente eran anápsidos, y poco después de su aparición se separaron en dos grupos: los Parareptilia que conservaban el cráneo anápsido, y los Eureptilia que incluyen a los diápsidos (los reptiles y aves actuales).

Traditional_ReptiliaÁrbol evolutivo de los vertebrados actuales, en el que se marca en verde a los grupos antiguamente considerados reptiles. Como se ve, la concepción tradicional de "reptil" incluye a los antepasados de los mamíferos y excluye a las aves. Imagen de Petter Bøckman.

Los diápsidos actualmente son el grupo de vertebrados terrestres más diversificado. Éstos se multiplicaron en muchísimas especies a finales del Pérmico (hace unos 254 millones de años), justo antes del Mesozoico (la Era de los Reptiles). Éstos se pueden dividir en dos grandes grupos: los Lepidosaurios y los Arcosaurios, ambos con representantes actuales.

LEPIDOSAURIA: PEQUEÑOS Y NUMEROSOS

Los lepidosaurios (literalmente “reptiles con escamas”) aparecieron a principios del Triásico (hace unos 247 millones de años) y, aunque la mayoría no alcanzó tamaños muy grandes, actualmente son el grupo de reptiles no aviares más numeroso. Éstos se caracterizan por presentar una hendidura cloacal transversa, por presentar escamas superpuestas y mudar la piel entera o a trozos y por otros caracteres esqueléticos.

Rat_Snake_moulted_skinMuda entera de la piel de una serpiente rata. Foto de Mylittlefinger.

Los lepidosaurios actuales pertenecen a dos órdenes diferentes:

  • Orden Rhynchocephalia: Incluyen a las dos especies de tuataras actuales. Se consideran fósiles vivientes porque presentan cráneos y características parecidas a las de los diápsidos mesozoicos. Actualmente se encuentran en grave peligro de extinción.
Sphenodon_punctatus_(5)Foto de un tuatara (Sphenodon punctatus), de Tim Vickers.
  • Orden Squamata: Los escamosos actuales incluyen iguanas, camaleones, salamanquesas, lagartijas, serpientes y otros lagartos sin patas. Con más de 9000 especies actuales los escamosos son un grupo muy numeroso, con un gran abanico de adaptaciones y estrategias de supervivencia.
Sin títuloFotos de algunos escamosos de izquierda a derecha y de arriba a abajo: Iguana verde (Iguana iguana, de Cary Bass), cobra real (Ophiophaga Hannah, de Michael Allen Smith), lagarto gusano de dos patas (Bipes biporus, de Marlin Harms) y camaleón de la Índia (Chamaeleo zeylanicus, de Shantanu Kuveskar).

ARCHOSAURIA: ANTIGUOS REYES

Los arcosaurios (literalmente “reptiles dominantes”) fueron el grupo de animales terrestres dominantes durante el Mesozoico. Éstos conquistaron todos los hábitats posibles hasta la extinción de la mayoría de grupos a finales del Cretácico. Algunos de los grupos que se extinguieron fueron los pseudosuquios (parientes de los cocodrilos actuales, orden Crocodylia), los pterosaurios (grandes reptiles voladores) y los dinosaurios (excepto las aves actuales, clado Aves).

Massospondylus_Skull_Steveoc_86Dibujo del cráneo del dinosaurio Massospondylus en el que se ven las diferentes oberturas que caracterizan a los arcosaurios diápsidos. Imagen de Steveoc 86.

Como podéis ver, los dos grupos de arcosaurios actuales no podrían ser más diferentes. Aun así, los cocodrilos y las aves comparten un antepasado común, y están más emparentados entre ellos que con el resto de reptiles.

Yellow-billed_stork_kazingaFoto de dos especies de arcosaurios actuales; un cocodrilo del Nilo (Crocodylus niloticus) y un tántalo africano (Mycteria ibis). Foto de Tom Tarrant.

¿Y LAS TORTUGAS?

Las tortugas (orden Testudines) siempre han sido un grupo difícil de clasificar. Las tortugas son los únicos amniotas actuales que presentan un cráneo anápsido, sin ninguna apertura post-ocular. Por eso, antiguamente se las había clasificado como descendientes de amniotas primitivos (clado Anapsida, actualmente en desuso) o como saurópsidos anápsidos primitivos (dentro del clado Parareptilia).

KONICA MINOLTA DIGITAL CAMERAEsqueleto de la tortuga extinta Meiolania platyceps que vivió en Nueva Caledonia hasta hace 3000 años. En esta foto se aprecia el cráneo compacto y sin oberturas temporales. Foto de Fanny Schertzer.

Estudios moleculares recientes han desvelado que las tortugas son realmente diápsidos que perdieron las aperturas temporales secundariamente. Lo que aún divide la comunidad científica es si los testudinios están más emparentados con los Lepidosauromorfos (lepidosaurios y sus antepasados) o con los Arcosauromorfos (arcosaurios y sus antepasados).

Leopard_tortoiseEjemplar de tortuga leopardo (Stigmochelys pardalis) de Tanzania. Foto de Charles J. Sharp.

Como habéis podido ver, la evolución de los amniotas es un tema muy complejo. Esperamos que con esta entrada haya quedado claro que:

  1. Los mamíferos (sinápsidos) provienen de un linaje evolutivo diferente al de los reptiles (saurópsidos).
  2. Los saurópsidos incluyen a los “reptiles” tradicionales (lepidosaurios, arcosaurios y tortugas) y a las aves (dentro de los arcosaurios).
  3. Aún queda mucho por investigar sobre la posición de las tortugas (testudinios) dentro del árbol evolutivo de los saurópsidos.
Figure_29_04_03Esquema modificado sobre las relaciones evolutivas entre los diferentes grupos de amniotas.

REFERENCIAS

Para la elaboración de esta entrada se han utilizado las siguientes fuentes:

Difusió-castellà