Arxiu d'etiquetes: tortuga

Genitales animales: anfibios, reptiles y mamíferos

Después de la primera entrega sobre los genitales de aves y peces, cerramos capítulo sobre las curiosidades de los penes, vaginas y demás órganos reproductores de anfibios, reptiles y mamíferos.

GENITALES EN ANFIBIOS

Como ya vimos en el artículo anterior, la cloaca es el orificio donde confluyen los aparatos digestivo, reproductor  y excretor. Todos los anfibios poseen cloaca, así como los reptiles, aves y algunos peces (tiburones y rayas) y mamíferos. Las larvas de los anfibios se caracterizan por sufrir una gran transformación conocida como metamorfosis.

No te pierdas el exitoso artículo sobre anfibios ladrones de esperma.

ANUROS

De reproducción externa, el apareamiento de muchos anuros se produce en el agua. En los anuros (anfibios sin cola, como las ranas) el macho, de menor tamaño que la hembra, se agarra a la hembra firmemente. Este abrazo se denomina amplexo. Las contracciones de la hembra al expulsar los huevos estimulan al macho para rociarlos de esperma en el mismo momento que son expulsados. Los huevos quedan unidos por una masa gelatinosa que adquiere diferentes formas según la especie.

Amplexo de Litoria xanthomera. Foto: Rainforest harley

Las ranas macho del género Ascaphus tienen una pseudocola que no es más que una extensión de la cloaca. Esto les ayuda a evitar pérdidas de esperma en las aguas de gran corriente donde viven, al depositar el esperma dentro de la cloaca de la hembra. Son pues los únicos anuros con fertilización interna.

Rana con cola (Ascaphus truei). Foto: Mokele

URODELOS

Casi todos los urodelos (anfibios con cola, como salamandras y tritones) presentan fecundación interna. El macho se sitúa delante la hembra y libera unos sacos (espermatóforos) que contienen los espermatozoides. La hembra camina sobre uno de ellos, lo recoge con los labios de la cloaca y los situa en la espermateca, una cavidad donde los espermatozoides esperan a que los huevos pasen por la cloaca para irlos fecundando. La hembra pone los huevos fecundados uno a uno pegándolos en plantas acuáticas, excepto en algunas especies de salamandra, en las que la hembra los retiene y nacen larvas vivas (ovoviviparismo).

Espermatóforos de salamandra (Ambystoma sp.). Foto: Placeuvm

ÁPODOS

Los ápodos o cecilias son anfibios sin patas con fecundación interna, pero a diferencia de los anuros se produce inseminación interna.  Esto es posible gracias a una pseudo-falo (phallodeum) que tienen los machos, que insertan en la cloaca de la hembra durante dos o tres horas.

Phallodeum de una cecilia. Foto cedida por: Danté Fenolio

En las especies ovíparas (25%), los huevos son custodiados por la madre, el resto de especies son ovovivíparas (75%). En algunas especies ovovivíparas las crías ya nacen metamorfoseadas, en otras como larva. Durante su estancia en el interior de la madre, se alimentan de células del oviducto, que raspan con sus dientes especiales. En el caso de la especie ovípara Boulengerula taitana, las larvas se alimentan de la piel de la madre lo que les permite crecer 10 veces su tamaño en una semana.

GENITALES EN REPTILES

REPTILES ESCAMOSOS

Los reptiles escamosos (orden Squamata), es decir, lagartos, serpientes y anfisbenas (culebrillas ciegas) poseen el pene dividido en dos: es lo que se conoce como hemipene. Se mantiene guardado en el interior de la cola y sale al exterior durante la cópula gracias a los tejidos eréctiles. A pesar de ser doble, durante la cópula sólo introducen en la hembra una de las partes, aunque pueden hacerlo alternativamente. Los extremos pueden ser lisos o presentar púas o estructuras para asegurar el agarre a la cloaca de la hembra.

Lagartija vivípara (Zootoca vivipara) con los hemipenes a la vista. Foto: Charlesjsharp

 

TORTUGAS

En algunas tortugas marinas, la cloaca conserva la capacidad de intercambio gaseoso, en otras palabras, de respirar. El agua pasa lentamente por ella, lo que permite recoger el oxígeno y llevarlo hasta los pulmones.

Las tortugas macho poseen un pene simple que está plegado en dos en la cloaca, dentro de la cola, por lo que la cola de los machos es más gruesa y larga que la de las hembras. Durante la erección, se llena de fluido, se despliega y sale al exterior, alcanzando un tamaño comparativamente bastante grande.

Pene de tortuga mediterránea (Testudo hermanni). Fuente

COCODRILOS

Los cocodrilos tienen un pene rígido (siempre en erección) escondido dentro del cuerpo que, sale disparado como un resorte al exterior en el momento de la cópula y se oculta de nuevo a la misma velocidad. Según este estudio, el tejido fibroso y colágeno del pene permitiría la no existencia de erección y de tumescencia en el aligator americano.

En este vídeo se puede observar cómo emerge el pene de un aligator americano durante su disección, al tocar el nervio pélvico.

 

GENITALES EN MAMÍFEROS

MAMÍFEROS MONOTREMAS

Los monotremas son los mamíferos más primitivos, con algunas características reptilianas, como la puesta de huevos y la presencia de cloaca. Ornitorrincos y equidnas son los representantes más conocidos.

El pene de los monotremas tiene 4 cabezas, aunque no todas pueden funcionar simultáneamente. Se usa sólo la mitad, es decir, dos cabezas cada vez. En el caso del ornitorrinco sólo funciona el lado izquierdo, ya que la hembra sólo tiene funcional el ovario izquierdo.

Pene de equidna. Fuente

MAMÍFEROS MARSUPIALES

Los marsupiales son aquellos mamíferos en los que la cría termina su desarrollo en el marsupio, una especie de bolsa que poseen las hembras donde se encuentran las mamas. Los más conocidos son los canguros, koalas, zarigüeyas y el extinto tilacino.

Generalmente las hembras tienen dos vaginas, que encajan con los penes bifurcados de los machos, que se retraen dentro del cuerpo en forma de S cuando están en reposo. Los penes de los marsupiales, a diferencia de algunos placentarios, no poseen ningún hueso en su interior.

Pene de zarigüeya. Foto: Ellen Rathbone

En el caso de los canguros, las hembras poseen tres vaginas (que se unen en una sola abertura al exterior) y dos úteros. Las dos vaginas laterales conducen el esperma hacia los úteros y la central es por donde desciende la cría durante el parto.

Sistema reproductor de las hembras marsupiales. Foto: National Geographic

MAMÍFEROS PLACENTARIOS

HUESO PENEANO Y ERECCIÓN

En los mamíferos placentarios, como los humanos, la cría se desarrolla en el útero y es nutrido mediante la placenta. Muchos machos de placentarios presentan un hueso peneano o báculo. Este hueso permitiría la cópula aunque no haya erección.

Hueso peneano de perro. La flecha señala la ubicación del surco uretral. Foto: Didier Descouens

Algunos placentarios han perdido el báculo: es el caso de los humanos, hienas, équidos (caballos, cebras…) y lagomorfos (conejos, liebres…). En ellos, la erección es posible gracias al llenado de sangre de los cuerpos cavernosos.

DELFINES

En el caso de los delfines, su pene es prensil y sensorial. La punta es giratoria y no es raro verlos palpar el fondo marino con su pene. Esto ha dado lugar a falsos mitos como que los delfines siempre están excitados e intentan copular con cualquier cosa que se les ponga por delante. Esta capacidad táctil también les permitiría estrechar lazos sociales entre ellos, incluso entre machos. Este comportamiento también lo observamos en las orcas.

La vagina de los delfines está llena de pliegues y recovecos para dificultar el acceso del esperma hasta el óvulo, ya sea de machos rivales o de machos con los que la hembra no deseaba aparearse. Si quieres ver cómo encaja el pene en la intrincada vagina del delfín clica aquí.

HIENAS

A simple vista podríamos confundir una hiena macho con una hembra. Las hienas moteadas (Crocuta crocuta) hembra, tienen una larga vagina que se extiende en un clítoris externo del mismo tamaño que el pene masculino. Las crías pues, tienen que atravesar este largo canal al nacer, que sufre grandes desgarros en los primeros partos y en ocasiones las crías mueren por no poder atravesarlo. Además, los labios vaginales también son grandes y llenos de grasa, lo que podría llegar a recordar a unos testículos.

Genitales de la hiena moteada. Fuente: Quora

REFERENCIAS

Mireia Querol Rovira

 

 

Genitals animals: amfibis, rèptils i mamífers

Després de la primera part sobre els genitals d’aus i peixos, tanquem capítol sobre les curiositats dels penis, vagines i altres òrgans reproductors d’amfibis, rèptils i mamífers.

GENITALS EN AMFIBIS

Com ja vam veure en l’article anterior, la cloaca és l’orifici on conflueixen els aparells digestiu, reproductor i excretor. Tots els amfibis posseeixen cloaca, així com els rèptils, aus i alguns peixos (taurons i rajades) i mamífers. Les larves dels amfibis es caracteritzen per patir una gran transformació coneguda com metamorfosi .

No et perdis l’exitós article sobre amfibis lladres d’esperma .

ANURS

De reproducció externa, l’aparellament dels anurs (amfibis sense cua, com les granotes) es produeix normalment a l’aigua. En els anurs  el mascle, de menor grandària que la femella, s’agafa a la femella fermament. Aquest abraçada es denomina amplexe. Les contraccions de la femella en expulsar els ous estimulen al mascle per ruixar-los d’esperma en el mateix moment que són expulsats. Els ous queden units per una massa gelatinosa que adquireix diferents formes segons l’espècie.

Amplexe de Litoria xanthomera. Foto: Rainforest harley

Les granotes mascle del gènere Ascaphus tenen una pseudocua que no és més que una extensió de la cloaca. Això els ajuda a evitar pèrdues d’esperma en les aigües de gran corrent on viuen, en dipositar l’esperma dins de la cloaca de la femella. Són doncs els únics anurs amb fertilització interna.

Granota amb cua (Ascaphus truei). Foto: Mokele


URODELS

Gairebé tots els urodels (amfibis amb cua, com salamandres i tritons) presenten fecundació interna. El mascle se situa davant la femella i allibera uns sacs (espermatòfors) que contenen els espermatozoides. La femella camina sobre un d’ells, el recull amb els llavis de la cloaca i els situa a l’espermateca, una cavitat on els espermatozoides esperen que els ous passin per la cloaca per anar-los fecundant. La femella posa els ous fecundats un per un enganxant-los a les plantes aquàtiques, excepte en algunes espècies de salamandra, en que la femella els reté i neixen larves vives (ovoviviparisme).

Espermatòfors de salamandra (Ambystoma sp.). Foto: Placeuvm

 

ÀPODES

Els àpodes o cecílies són amfibis sense potes amb fecundació interna, però a diferència dels anurs es produeix inseminació interna. Això és possible gràcies a un pseudo-fal·lus (phallodeum) que tenen els mascles, que s’insereixen a la cloaca de la femella durant dues o tres hores.

Phallodeum d’una cecília. Foto cedida per: Danté Fenolio

En les espècies ovípares (25%) els ous són custodiats per la mare, la resta d’espècies són ovovivípares (75%). En algunes espècies ovovivípares les cries ja neixen metamorfosades, en altres com larva. Durant la seva estada a l’interior de la mare, s’alimenten de cèl·lules de l’oviducte, que raspen amb les seves dents especials. En el cas de l’espècie ovípara Boulengerula taitana, les larves s’alimenten de la pell de la mare, el que els permet créixer 10 vegades la seva grandària en una setmana.

GENITALS EN RÈPTILS

RÈPTILS ESCAMOSOS

Els rèptils escamosos (ordre Squamata), és a dir, llangardaixos, serps i anfisbeníds (serpetes cegues) posseeixen el penis dividit en dos: és el que es coneix com hemipenis. Es manté guardat a l’interior de la cua i surt a l’exterior durant la còpula gràcies als teixits erèctils. Tot i ser doble, durant la còpula només s’introdueixen a la femella una de les parts, encara que poden fer-ho alternativament. Els extrems poden ser llisos o presentar punxes o estructures per assegurar l’adherència a la cloaca de la femella.

Sargantana vivípara (Zootoca vivipara) amb els hemipenis a la vista. Foto: Charlesjsharp

TORTUGUES

En algunes tortugues marines, la cloaca conserva la capacitat d’intercanvi gasós, en altres paraules, de respirar. L’aigua passa lentament per ella, el que permet recollir l’oxigen i portar-lo fins als pulmons.

Les tortugues mascle posseeixen un penis simple que està plegat en dos a la cloaca, dins de la cua, de manera que la cua dels mascles és més gruixuda i llarga que la de les femelles. Durant l’erecció, s’omple de fluid, es desplega i surt a l’exterior, aconseguint una mida comparativament bastant gran.

Penis de tortuga mediterrània (Testudo hermanni). Font

COCODRILS

Els cocodrils tenen un penis rígid (sempre a erecció) amagat dins del cos que surt disparat com un ressort a l’exterior en el moment de la còpula i s’amaga de nou a la mateixa velocitat. Segons aquest estudi , el teixit fibrós i col·lagen del penis permetria la no existència d’erecció i detumescencia.

En aquest vídeo es pot observar com emergeix el penis d’un aligàtor americà durant la seva disseció, en tocar el nervi pèlvic.

GENITALS EN MAMÍFERS

MAMÍFERS MONOTREMES

Els monotremes són els mamífers més primitius, amb algunes característiques reptilianes, com la posta d’ous i la presència de cloaca. Ornitorrincs i equidnes són els representants més coneguts.

El penis dels monotremes tenen 4 extremitats, encara que no totes poden funcionar simultàniament. S’usa només la meitat, és a dir, dues bifurcacions cada vegada. En el cas de l’ornitorinc només funciona la banda esquerra, ja que la femella només té funcional l’ovari esquerre.

Penis d’equidna. Font

MAMÍFERS MARSUPIALS

Els marsupials són aquells mamífers en què la cria acaba el seu desenvolupament en el marsupi, una mena de bossa que posseeixen les femelles on es troben les mames. Els més coneguts són els cangurs, coales, opòssums i l’extint llop marsupial.

Generalment les femelles tenen dues vagines, que encaixen amb els penis bifurcats dels mascles, que es retreuen dins el cos en forma de S quan estan en repòs. Els penis dels marsupials, a diferència d’alguns placentaris, no posseeixen cap os al seu interior.

Penis d’opòssum. Foto: Ellen Rathbone

En el cas dels cangurs, les femelles posseeixen tres vagines (que s’uneixen en una sola obertura a l’exterior) i dos úters. Les dues vagines laterals condueixen l’esperma cap als úters i la central és per on baixa la cria durant el part.

Sistema reproductor de les femelles marsupials. Foto: National Geographic

MAMÍFERS PLACENTARIS

OS PENIÀ I ERECCIÓ

En els mamífers placentaris, com els humans, la cria es desenvolupa a l’úter i és nodrit mitjançant la placenta. Molts mascles de placentaris presenten un os penià o bàcul. Aquest os permet la còpula encara que no hagi erecció.

Os del penis del gos. La fletxa assenyala la ubicació del solc uretral. Foto: Didier Descouens

Alguns placentaris han perdut el bàcul: és el cas dels humans, hienes, èquids (cavalls, zebre …) i lagomorfs (conills, llebres …). En ells, l’erecció és possible gràcies a l’ompliment de sang dels cossos cavernosos.

DOFINS

En el cas dels dofins, el seu penis és prènsil i sensorial. La punta és giratòria i no és rar veure’ls palpar el fons marí amb el seu penis. Això ha donat lloc a falsos mites com que els dofins sempre estan excitats i intenten copular amb qualsevol cosa que se’ls posi per davant. Aquesta capacitat tàctil també els permetria estrènyer llaços socials entre ells, fins i tot entre mascles. Aquest comportament també l’observem en les orques .

La vagina dels dofins està plena de plecs i racons per dificultar l’accés de l’esperma fins a l’òvul, ja sigui de mascles rivals o de mascles amb els que la femella no desitjava aparellar-se. Si vols veure com encaixa el penis a la intricada vagina del dofí clica aquí.

HIENES

A primera vista podríem confondre una hiena mascle amb una femella. Les hienes rialleres (Crocuta crocuta) femella, tenen una llarga vagina que s’estén en un clítoris extern de la mateixa mida que el penis masculí. Les cries doncs, han de travessar aquest llarg canal en néixer, que pateix grans estrips en els primers parts i en ocasions les cries moren per no poder travessar-lo. A més, els llavis vaginals també són grans i plens de greix, el que podria arribar a recordar a uns testicles.

Genitals de la hiena riallera. Fuente: Quora

REFERÈNCIES

Evolució de la closca amb només quatre tortugues fòssils

Les tortugues són animals simpàtics que, tot i que resulten adorables per a la majoria de gent, porten de cap als paleontòlegs des de fa molt de temps. La combinació de característiques considerades primitives amb una anatomia especialment derivada, ha fet que l’origen i evolució d’aquests rèptils hagin sigut quasi impossibles de reconstruir. En aquesta entrada intentarem fer-nos una idea sobre com es va desenvolupar una de les principals característiques de les tortugues (la closca) amb només quatre exemples de “tortugues” primitives.

PARENTS ACTUALS I EXTINGITS

Com ja vam explicar en una entrada anterior, l’origen dels testudinis encara és tema de debat dins la comunitat científica. Les tortugues presenten algunes característiques anatòmiques úniques entre els vertebrats actuals que fan que es pugui confondre el seu origen filogenètic. Una de les característiques que més ha confós als paleontòlegs és el seu crani.

caretta_carettazz-min
Crani de tortuga careta (Caretta caretta) en el que podem veure la manca d’obertures temporals. Foto de David Stang.

Mentre que la resta de rèptils són diàpsids (presenten dues obertures temporals a cada costat del crani), les tortugues presenten un crani típicament anàpsid (sense cap obertura temporal). Tot i així, estudis genòmics recents han demostrat que molt probablement els testudinis (ordre Testudines, les tortugues actuals) descendeixen d’un avantpassat amb un crani i que al llarg de la seva evolució van revertir a la forma anàpsida primitiva. El que no està tant clar és si les tortugues estan més emparentades amb els lepidosaures (llangardaixos, serps i tuàtares) o amb els arcosaures (cocodrils i aus). La hipòtesi més acceptada és la segona.

Tot i que els origens dels testudinis encara són una mica misteriosos, la majoria de paleontòlegs coincideixen en que aquests es troben dins del clade Pantestudines, el qual agrupa a totes aquelles espècies més emparentades amb les tortugues que amb qualsevol altre animal. Un grup de rèptils que també es troben dins dels pantestudins són els sauropterigis com els plesiosaures i els placodonts.

plesiosaurus_3db-min
Reconstrucció de Dmitry Bogdanov del sauropterigi Plesiosaurus, un parent llunyà de les tortugues.

EVOLUCIÓ DELS TESTUDINIS

La resta de pantestudins ens ajuden a formar una imatge de com les tortugues van adquirir una anatomia tant especialitzada. Però primer, mirem algunes de les característiques de les tortugues:

  • Una closca formada per dues parts: la meitat dorsal (espàldar) que prové de la fusió de les vèrtebres i les costelles dorsals i la meitat ventral (plastró) que prové de unes costelles ventrals anomenades “gastralia” (presents en alguns rèptils actuals).
  • Mentre que la resta de vertebrats presentem l’escàpula per sobre les costelles, les costelles de les tortugues (la seva closca) es troben cobrint l’escàpula.
  • La habilitat d’amagar el cap i les potes dins la closca.
  • La absència de dents; en canvi presenten becs còrnis.

Com veurem, la adquisició d’aquestes característiques es va donar molt gradualment.

8374089715_ed63b95c7d_o-min
Espàldar d’una tortuga morta, on veiem com les costelles es fusionen amb les vèrtebres per a formar la closca. Foto de Fritz Flohr Reynolds.

Tot i que encara no està clar la seva relació exacta amb les tortugues, Eunotosaurus africanus és el candidat a parent de les tortugues més antic. El Eunotosaurus era un animal fossorial que visqué fa 260 milions d’anys a Sudàfrica. Aquest animal tenia unes costelles dorsals molt amples i en contacte amb elles, cosa que es creu que servia de punt d’anclatge per als potents músculs de les potes davanteres, utilitzats mentre excavava. A més, de forma semblant a les tortugues actuals, Eunotosaurus havia perdut els músculs intercostals i presentava una reorganització de la musculatura respiratòria.

eunotosaurus-min
Fòssil de Eunotosaurus, on s’aprecien les costelles amples característiques. Foto de Flowcomm.

El parent indiscutible més antic de les tortugues és Pappochelys rosinae d’Alemanya (fa 240 milions d’anys). El nom “Pappochelys” vol dir literalment “tortuga avi”, ja que abans del descobriment de Eunotosaurus era el parent més antic d’aquestes. Igual que Eunotosaurus, presentava les costelles dorsals amples i en contacte entre elles. A més, les seves costelles ventrals ja eren més amples i gruixudes i la seva cintura escapular es situava sota les costelles dorsals.

pappo_skelett
Dibuix de Rainer Schoch de l’esquelet de Pappochelys on es poden veure algunes de les seves característiques. Es creu que Pappochelys era un animal semiaquàtic que nedava impulsat per la seva llarga cua.

El següent pas en l’evolució de les tortugues el trobem fa 220 milions d’anys, a la segona meitat del Triàssic de Xina. El seu nom és Odontochelys semitestacea, cosa que vol dir “tortuga dentada amb mitja closca”. Aquest nom es dèu al fet que, a diferència de les tortugues autèntiques, Odontochelys tenia una boca amb dents i només presentava la part ventral de la closca, el plastró. Tot i que també tenia les costelles dorsals amples, només s’han trobat proves de la presència de plastró. Odontochelys va ser descobert en dipòsits d’aigua dolça, de manera que sembla plausible que desenvolupés primer un plastró per protegir-se de depredadors que l’ataquéssin de sota.

odontochelys_bw-min
Reconstrucció de Nobu Tamura d’Odontochelys semitestacea. El fet de que només presentés mitja closca fa que no se’l consideri una tortuga autèntica.

El primer conegut testudini amb una closca completa és Proganochelys quenstedti del Triàssic, fa 210 milions d’anys. Aquest ja presentava moltes de les característiques de les tortugues actuals: la closca estava completament formada, amb espàldar i plastró, el seu crani era de configuració anàpsida i no presentava dents. No obstant això, Proganochelys no era capaç d’amagar el cap i les potes dins de la closca (tot i que això potser es devia a les banyes que presentava). A més, presentava dues peces de la closca extra als costats d’aquesta, que probablement servien per protegir les potes.

proganochelys_model-min
Reconstrucció de Proganochelys del Museum am Lowentor de Stuttgart. Foto de Ghedoghedo.

TORTUGUES D’AVUI EN DIA

L’ordre dels Testudines tal i com els coneixem avui, va aparèixer fa uns 190 milions d’anys, durant el Juràssic. Aquestes tortugues actuals es classifiquen en dos subordres diferents, els quals es van separar molt ràpidament al principi de l’evolució dels testudinis:

Subordre Pleurodira: Aquest subordre és el més petit ja que només conté tres famílies actuals, totes natives de l’hemisferi sud. La principal característica és la forma en que amaguen el cap lateralment a dins la closca, cosa que fa que part del coll quedi exposat i que les vèrtebres cervicals tinguin una forma característica (Pleurodira vol dir aproximadament, “coll de costat”). A més, els pleurodirs presenten 13 escuts al plastró.

chelodina_longicollis_1-min
Foto d’Ian Sutton d’una tortuga de coll de serp australiana (Chelodina longicollis), un pleurodir típic.

Subordre Cryptodira: Els criptodirs comprenen a la gran majoria de tortugues. Mentre que els pleurodirs només presenten espècies d’aigua dolça (com es creu que era l’avantpassat comú dels testudinis), els criptodirs inclouen espècies aquàtiques, però també terrestres i marines. Apart de presentar només entre 11 i 12 escuts als plastró, la seva característica principal és la capacitat de retraure el coll i per tant amagar el cap completament dins la closca (Criptodira vol dir aproximadament, “coll amagat”). Els criptodirs es troben pràcticament a tots els continents i a tots els oceans (excepte en els hàbitats més freds).

alabama_red-bellied_turtle_us_fws_cropped-min
Tortuga de ventre vermell d’Alabama (Pseudemys alabamensis), de la U.S. Fish and Wildlife Service. En aquesta foto veiem com amaguen el cap els criptodirs.

Tot i que encara queden preguntes per respondre sobre l’evolució de les tortugues, esperem que amb aquesta petita introducció a algunes de les “tortugues” fòssils més característiques us hàgiu fet una idea de com les tortugues van aconseguir la closca. Siguin quins siguin els seus orígens, esperem que l’aparició de l’home no sigui el que posi fi a la història d’aquest grup d’animals lent però constant.

REFERÈNCIES

Durant l’elaboració d’aquesta entrada s’han consultat les següent fonts:

difusio-catala

Evolución del caparazón con sólo cuatro tortugas fósiles

Las tortugas son animales simpáticos que, aunque resultan adorables para la mayoría de gente, llevan de cabeza a los paleontólogos desde hace décadas. La combinación de características consideradas primitivas con una anatomía especialmente derivada, ha hecho que el origen y la evolución de estos reptiles hayan sido casi imposibles de reconstruir. En esta entrada intentaremos hacernos una idea sobre cómo se desarrolló una de las principales características de las tortugas (el caparazón) con sólo cuatro ejemplos de “tortugas” primitivas.

PARIENTES ACTUALES Y EXTINTOS

Como ya explicamos en una entrada anterior, el origen de los testudinos aún es tema de debate en la comunidad científica. Las tortugas presentan algunas características anatómicas únicas entre los vertebrados actuales que hacen que se pueda confundir su origen filogenético. Una de las características que más ha confundido a los paleontólogos es su cráneo.

caretta_carettazz-min
Cráneo de tortuga boba (Caretta caretta) en el que podemos ver la falta de aperturas temporales. Foto de David Stang.

Mientras que el resto de reptiles son diápsidos (presentan dos aperturas temporales a cada lado del cráneo), las tortugas presentan un cráneo típicamente anápsido (sin ninguna apertura temporal). Aun así, estudios genómicos recientes han demostrado que muy probablemente los testudinios (orden Testudines, las tortugas actuales) descienden de un antepasado con un cráneo diápsido y que a lo largo de su evolución revertieron a la forma anápsida primitiva. Lo que no está muy claro es si las tortugas están más emparentadas con los lepidosaurios (lagartos, serpientes y tuataras) o con los arcosaurios (cocodrilos y aves). La hipótesis más aceptada es la segunda.

Aunque los orígenes de los testudinos aún son un poco misteriosos, la mayoría de paleontólogos coinciden en que éstos se hallan dentro del clado Pantestudines, el cuál agrupa a todas esas especies más emparentadas con las tortugas que con cualquier otro animal. Un grupo de reptiles que también se encuentran dentro de los pantestudinos son los sauropterigios como los plesiosaurios y los placodontos.

plesiosaurus_3db-min
Reconstrucción de Dmitry Bogdanov del sauropterigio Plesiosaurus, un pariente lejano de las tortugas.

EVOLUCIÓN DE LOS TESTUDINOS

El resto de pantestudinos nos ayudan a formar una imagen de cómo las tortugas adquirieron una anatomía tan especializada. Pero primero, miremos algunas de las características de las tortugas:

  • Un caparazón formado por dos partes: la mitad dorsal (espáldar) que proviene de la fusión de las vértebras y las costillas dorsales y la mitad ventral (plastrón) que proviene de unas costillas ventrales llamadas “gastralia” (presentes en algunos reptiles actuales).
  • Mientras que el resto de vertebrados presentamos la escápula por encima de las costillas, las costillas de las tortugas (su caparazón) se encuentran cubriendo la escápula.
  • La habilidad de esconder la cabeza y las patas dentro del caparazón.
  • La ausencia de dientes; en su lugar presentan picos córneos.

Como veremos, la adquisición de estas características se dio muy gradualmente.

8374089715_ed63b95c7d_o-min
Espáldar de una tortuga muerta, donde vemos como las costillas se fusionan con las vértebras para formar el caparazón. Foto de Fritz Flohr Reynolds.

Aunque aún no está clara su relación exacta con las tortugas, Eunotosaurus africanus es el candidato a pariente de las tortugas más antiguo. El Eunotosaurus era un animal fosorial que vivió hace 260 millones de años en Sudáfrica. Este animal tenía unas costillas dorsales muy anchas y en contacto entre ellas, cosa que se cree que servía de punto de anclaje para los potentes músculos de las patas delanteras, utilizados mientras cavaba. Además, de manera similar a las tortugas actuales, Eunotosaurus había perdido los músculos intercostales y presentaba una reorganización de la musculatura respiratoria.

eunotosaurus-min
Fósil de Eunotosaurus, donde se aprecia las costillas anchas características. Foto de Flowcomm.

El pariente indiscutible más antiguo de las tortugas es Pappochelys rosinae de Alemania (hace unos 240 millones de años). El nombre “Pappochelys” significa literalmente “tortuga abuela”, ya que antes del descubrimiento de Eunotosaurus era el pariente más antiguo de éstas. Igual que Eunotosaurus, presentaba costillas dorsales anchas y en contacto entre ellas. Además, sus costillas ventrales ya eran más anchas y gruesas y su cintura escapular se situaba bajo las costillas dorsales.

pappo_skelett
Dibujo de Rainer Schoch del esqueleto de Pappochelys donde se pueden ver algunas de sus características. Se cree que Pappochelys era un animal semiacuático que nadaba impulsado por su larga cola.

El siguiente paso en la evolución de las tortugas lo encontramos hace 220 millones de años, en la segunda mitad del Triásico de China. Su nombre es Odontochelys semitestacea, cosa que significa “tortuga dentada con medio caparazón”. Este nombre se debe al hecho que, a diferencia de las tortugas auténticas, Odontochelys tenía una boca con dientes y sólo presentaba la parte ventral del caparazón, el plastrón. Aunque también tenía costillas dorsales anchas, sólo se han encontrado pruebas de la presencia de plastrón. Odontochelys fue descubierto en depósitos de agua dulce, de manera que parece plausible que desarrollara primero el plastrón para protegerse de depredadores que lo atacaran por debajo.

odontochelys_bw-min
Reconstrucción de Nobu Tamura de Odontochelys semitestacea. El hecho de que sólo presentara medio caparazón hace que no se lo considere una tortuga auténtica.

El primer testudino conocido con un caparazón completo es Proganochelys guenstedti del Triásico, hace 210 millones de años. Éste ya presentaba muchas características de las tortugas actuales: el caparazón estaba completamente formado, con espáldar y plastrón, su cráneo era de configuración anápsida y no presentaba dientes. No obstante, Proganochelys no era capaz de esconder la cabeza y las patas en su caparazón (aunque esto quizás se debía a los cuernos que presentaba). Además, presentaba dos piezas del caparazón extra a los lados de éste, que probablemente servían para proteger las patas.

proganochelys_model-min
Reconstrucción de Proganochelys del Museum am Lowentor de Stuttgart. Foto de Ghedoghedo.

TORTUGAS DE HOY EN DÍA

El orden de los Testudines tal y como los conocemos hoy, aparecieron hace unos 190 millones de años, durante el Jurásico. Estas tortugas actuales se clasifican en dos subórdenes diferentes, los cuáles se separaron muy rápidamente al principio de la evolución de los testudinos:

Suborden Pleurodira: Este suborden es el más pequeño ya que sólo contiene tres familias actuales, todas nativas del hemisferio sur. La principal característica es la forma en que esconden la cabeza lateralmente dentro de su caparazón, cosa que hace que parte del cuello quede expuesto y que las vértebras cervicales tengan una forma característica (Pleurodira significa aproximadamente, “cuello de lado”). Además los pleurodiros presentan 13 escudos en el plastrón.

chelodina_longicollis_1-min
Foto de Ian Sutton de una tortuga de cuello de serpiente australiana (Chelodina longicollis), un pleurodiro típico.

Suborden Cryptodira: Los criptodiros comprenden a la gran mayoría de tortugas. Mientras que los pleurodiros sólo presentan especies de agua dulce (como se cree que era el antepasado común de los testudinos), los criptodiros incluyen especies acuáticas, pero también terrestres y marinas. Aparte de presentar sólo entre 11 y 12 escudos en el plastrón, su característica principal es la capacidad de retraer el cuello y por lo tanto esconder la cabeza completamente dentro del caparazón (Criptodira significa aproximadamente, “cuello escondido”). Los criptodiros se encuentran prácticamente en todos los continentes y en todos los océanos (excepto en los hábitats más fríos).

alabama_red-bellied_turtle_us_fws_cropped-min
Tortuga de vientre rojo de Alabama (Pseudemys alabamensis), de la U.S. Fish and Wildlife Service. En esta foto vemos cómo esconden la cabeza los criptodiros.

Aunque aún quedan preguntas por responder sobre la evolución de las tortugas, esperemos que con esta pequeña introducción a algunas de las “tortugas” fósiles más características os hayáis hecho una idea de cómo las tortugas consiguieron su caparazón. Sean cuales sean sus orígenes, esperemos que la aparición del hombre no sea el que ponga fin a la historia de este grupo de animales lento pero constante.

REFERENCIAS

Durante la elaboración de esta entrada se han consultado las siguientes fuentes:

difusio-castella

Rèptils i mamífers: mateix origen, diferents històries

Els mamífers van evolucionar dels rèptils? Doncs la veritat és que no. Rèptils i mamífers tenen històries evolutives independents que es van separar poc després de l’aparició de l’anomenat ou amniota, que permetia que les cries d’aquests animals nasquéssin fora de l’aigua. Anteriorment vam parlar sobre l’origen dels vertebrats, i sobre com aquests van sortir del mar per a caminar per terra per primer cop. En aquesta entrada explicarem com els avantpassats de rèptils i mamífers, els AMNIOTES, van independitzar-se del medi aquàtic i van convertir-se en el grup dominant d’animals terrestres.

L’OU AMNIOTA

La característica que uneix a rèptils i mamífers en un sol grup és l’ou amniota. Mentre que els ous dels amfibis són relativament petits i només presenten una capa interna, els ous dels amniotes són força més grans i presenten vàries membranes protegint l’embrió i mantenint-lo en un medi aquós. La capa més externa és la closca de l’ou, que apart d’oferir protección física a l’embrió, evita la pèrdua d’aigua i la seva porositat permet l’intercanvi de gasos. Sota la closca hi trobem les següents membranes:

512px-Crocodile_Egg_Diagram.svgEsquema de l’ou d’un cocodril: 1. closca de l’ou 2. sac vitel·lí 3. vitel (nutrients) 4. vasos sanguinis 5. amni 6. cori 7. aire 8. alantoide 9. albúmina (clara de l’ou) 10. sac amniòtic 11. embrió 12. líquid amniòtic. Imatge de Amelia P.
  • Cori: És la primera membrana interna que trobem, proporciona protecció i, juntament amb l’amni, formen el sac amniòtic. A més, al estar en contacte amb la closca, participa en l’intercanvi de gasos, portant oxígen de l’exterior a l’embrió i diòxid de carboni de l’embrió a l’exterior.
  • Amni: Membrana que envolta l’embrió i forma la part interna del sac amniòtic. Aquesta proporciona un ambient aquós a l’embrió, i el connecta amb el sac vitel·lí (estructura que proporciona aliment i que també es troba en peixos i amfibis).
  • Alantoide: La tercera capa, serveix com a magatzem de residus nitrogenats, i juntament amb el cori ajuda en l’intercanvi de gasos.
512px-Amphibian_Egg_Diagram.svgEsquema de l’ou d’un amfibi: 1. càpsula gelatinosa 2. membrana vitel·lina 3. fluid perivitel·lí 4. vitel 5. embrió. Imatge de Separe3g.

Aquest seguit de membranes fan que els amniotes no hagin de tornar a l’aigua per a pondre els ous. A més, a diferència dels amfibis, els amniotes no passen per la fase larvària amb brànquies, sinó que neixen directament com a adults en miniatura, amb pulmons i potes (els que en tenen). Tot això va fer que els primers amniotes s’independitzéssin completament del medi aquàtic.

ORIGEN DELS AMNIOTES

Les primers amniotes van evolucionar fa uns 312 milions d’anys a partir de tetràpodes reptiliomorfs. A finals del Carbonífer van desaparèixer molts dels boscos tropicals on vivien els amfibis primitius, deixant lloc a un clima més fred i àrid. Això va acabar amb molts dels grans amfibis de l’época, deixant espai per a que els amniotes ocupéssin els nous hàbitats.

Solenodonsaurus1DBReconstrucció de Solenodonsaurus janenschi, un dels candidats a ser el primer amniota, que visqué fa 320-305 milions d’anys a l’actual República Txeca. Recontrucció de Dmitry Bogdanov.

CARACTERÍSTIQUES

Aquests primers amniotes presentaven un seguit  de característiques que els diferenciaven dels seus avantpassats semiaquàtics:

  • Urpes còrnies (els amfibis no tenen urpes) i pell queratinitzada que redueix la pèrdua d’aigua.
  • Intestí gruixut més gran i major densitat de túbuls renals, per augmentar la reabsorció d’aigua.
  • Glàndules llacrimals especialitzades i una tercera membrana a l’ull (membrana nictitant) que mantenen la humitat ocular.
  • Pulmons més grans.
  • Pèrdua de la línia lateral (òrgan sensorial present en peixos i amfibis).

L’esquelet i la musculatura també van evolucionar oferint una major movilitat i agilitat en un hàbitat terrestre. Els primers amniotes presentaven les costelles tancades per davant mitjançant l’esternó, fent que els seus òrgans interns estiguéssin més ben subjectats, i un seguit de receptors musculars els conferien una major agilitat i coordinació durant la locomoció.

CRANIS AMNIOTES

Tradicionalment, es classificaven els diferents amniotes en base a l’estructura del seu crani. La característica que es mirava era la presència de obertures temporals (fenestres), segons les quals teníem tres grups:

  • Anàpsids (“sense arcs”): No presenten cap obertura temporal (tortugues).
Skull_anapsida_1Esquema d’un crani anàpsid, de Preto(m).
  • Sinàpsids (“arcs fusionats”): Presenten una sola obertura temporal inferior (mamífers).
Skull_synapsida_1Esquema d’un crani sinàpsid, de Preto(m).
  • Diàpsids (“dos arcs”): Presenten dues obertures temporals (rèptils, incloent les aus).
Skull_diapsida_1Esquema d’un crani diàpsid, de Preto(m).

Abans es creia que els primers amniotes presentaven un crani anàpsid (sense obertures, com les tortugues) i que posteriorment es van separar els sinàpsids i els diàpsids (les obertures temporals formaven uns “arcs” que proporcionaren nous punts d’anclatge per la musculatura mandibular). Tanmateix, s’ha vist que aquesta classificació en tres grups no és vàlida.

Tot i que encara es creu que els primers amniotes eren anàpsids, actualment es pensa que aquests, molt poc després de la seva aparició, es van separar en dos llinatges diferents: els sinàpsids (clade Synapsida) i els sauròpsids (clade Sauropsida).

SYNAPSIDA

Aquest llinatge inclou als mamífers i als seus avantpassats amniotes. Tot i que els primers sinàpsids com Archaeothyris externament s’assemblessin a una sargantana, estaven més emparentats amb els mamífers i compartien amb aquests l’obertura temporal única per on passaven els músculs mandibulars.

Archaeothyris.svgDibuix del crani de Archaeothyris, el que es creu que va ser un dels primers sinàpsids que visqué fa uns 306 milions d’anys a Nova Escòcia. Dibuix de Gretarsson.

Als avantpassats dels mamífers abans se’ls coneixia com a “rèptils mamiferoides”, ja que es creia que els mamífers havien evolucionat de rèptils primitius. Actualment és acceptat que els sinàpsids formen un llinatge independent dels rèptils, i que comparteixen un seguit de tendències evolutives que porten fins als mamífers moderns: l’aparició de diferents tipus de dents, la mandíbula formada per un únic os, la posició més vertical de les potes respecte el cos, etc…

Dimetrodon_grandisReconstrucció de Dimetrodon grandis, un dels sinàpsids més coneguts, de fa uns 280 milions d’anys. Reconstrucció de Dmitry Bogdanov.

Tot i que la majoria de mamífers actuals no pon ous i pareix a les cries vives, tots els grups durant el desenvolupament embrionari mantenen les tres membranes característiques dels amniotes (amni, cori i alantoide).

SAUROPSIDA

Els sauròpsids inclouen als rèptils actuals i als seus avantpassats i parents amniotes. Actualment en molts treballs científics s’utilitza la paraula “sauròpsid” en lloc de “rèptil” quan es discuteix de filogènia, ja que dins de sauròpsid s’inclou també a les aus. Els primers sauròpsids probablement eren anàpsids, i poc després de la seva aparició es van separar en dos grups: els Parareptilia que conservaven el crani anàpsid, i els Eureptilia que inclouen als diàpsids (els rèptils i aus actuals).

Traditional_ReptiliaArbre evolutiu dels vertebrats actuals, on es marca de color verd als grups antigament considerats rèptils. Com es veu, la concepció tradicional de “rèptil” inclou als avantpassats dels mamífers i exclou a les aus. Imatge de Petter Bøckman.

Els diàpsids actualment són el grup de vertebrats terrestres més diversificat. Aquests es van multiplicar en moltíssimes espècies a finals del Pèrmic (fa uns 254 milions d’anys), just abans del Mesozoic (l’Era dels Rèptils). Aquests es poden dividir en dos grans grups: els Lepidosaures i els Arcosaures, ambdós amb representants actuals.

LEPIDOSAURIA: PETITS I NOMBROSOS

Els lepidosaures (literalment “rèptils amb escates”) van aparèixer a principis del Triàssic (fa uns 247 milions d’anys) i, tot i que la majoria no van assolir grans mides, actualment són el grup de rèptils no aviaris més nombrós. Aquests es caracteritzen per presentar una escletxa cloacal transversal, per presentar escates sobreposades i mudar la pell sencera o a trossos i per altres caràcters esquelètics.

Rat_Snake_moulted_skinMuda sencera de la pell d’una serp rata. Foto de Mylittlefinger.

Els lepidosaures actuals pertanyen a dos ordres diferents:

  • Ordre Rhynchocephalia: Inclouen a les dues espècies de tuatares actuals. Es consideren fòssils vivents perquè presenten cranis i característiques semblants a les dels diàpsids mesozoics i actualmente es troben en greu perill d’extinció.
Sphenodon_punctatus_(5)Foto d’una tuatara (Sphenodon punctatus), de Tim Vickers.
  • Ordre Squamata: Els escamosos actuals inclouen iguanes, camaleons, dragons, sargantanes, serps i altres llangardaixos sense potes. Amb més de 9000 espècies actuales els escamosos són un grup molt nombrós, amb un gran ventall d’adaptacions i estratègies de supervivencia.
Sin títuloFotos d’alguns escamosos d’esquerra a dreta i de dalt a baix: Iguana verda (Iguana iguana, de Cary Bass), cobra reial (Ophiophaga Hannah, de Michael Allen Smith), llangardaix cuc de dues potes (Bipes biporus, de Marlin Harms) i camaleó de l’Índia (Chamaeleo zeylanicus, de Shantanu Kuveskar).

ARCHOSAURIA: ANTICS REIS

Els arcosaures (literalment “rèptils dominants”) van ser el grup d’animals terrestres dominants durant el Mesozoic. Aquests van conquistar tots els habitats possibles fins a l’extinció de la majoria de grups a finals del Cretàcic. Alguns dels grups que es van extingir són els pseudosuquis (parents dels cocodrils actuals, ordre Crocodylia), els pterosaures (grans rèptils voladors) i els dinosaures (excepte els ocells actuals, clade Aves).

Massospondylus_Skull_Steveoc_86Dibuix del crani del dinosaure Massospondylus en el que es veuen les diferents obertures que caracteritzen als arcosaures diàpsids. Imatge de Steveoc 86.

Com podeu veure, els dos grups d’arcosaures actuals no podrien ser més diferents. Tanmateix, els cocodrils i les aus comparteixen un avantpassat comú, i estan més emparentats entre ells que amb la resta de rèptils.

Yellow-billed_stork_kazingaFoto de dues espècies d’arcosaures actuals; un cocodril del Nil (Crocodylus niloticus) i un tàntal africà (Mycteria ibis). Foto de Tom Tarrant.

I LES TORTUGUES?

Les tortugues (ordre Testudines) sempre han estat un grup difícil de classificar. Les tortugues són els únics amniotes actuals que presenten un crani anàpsid, sense cap obertura post-ocular. Per això antigament, se les havia classificat com a descendents d’amniotes primitius (clade Anapsida, actualment en desús) o com a sauròpsids anàpsids primitius (dins del clade Parareptilia).

KONICA MINOLTA DIGITAL CAMERAEsquelet de la tortuga extingida Meiolania platyceps que visqué a Nova Caledònia fins fa 3000 anys. En aquesta foto s’aprecia el crani compacte i sense obertures temporals. Foto de Fanny Schertzer.

Estudis moleculars recents, han desvelat que les tortugues són realment diàpsids que van perdre les obertures temporals secundàriament. El que encara divideix a la comunitat científica és si els testudinis están més emparentats amb els Lepidosauromorfs (lepidosaures i els seus avantpassats) o amb els Arcosauromorfs (arcosaures i els seus avantpassats).

Leopard_tortoiseExemplar de tortuga lleopard (Stigmochelys pardalis) de Tanzània. Foto de Charles J. Sharp.

Com heu pogut veure, l’evolució dels amniotes és un tema molt complex. Esperem que amb aquesta entrada hagi quedat clar que:

  1. Els mamífers (sinàpsids) provenen d’un llinatge evolutiu diferent al dels rèptils (sauròpsids).
  2. Els sauròpsids inclouen als “rèptils” tradicionals (lepidosaures, arcosaures i tortugues) i a les aus (dins dels arcosaures).
  3. Encara queda molt per investigar sobre la posición de les tortugues (testudinis) dins l’arbre evolutiu dels sauròpsids.
Figure_29_04_03Esquema modificat sobre les relacions evolutives entre els diferents grups d’amniotes.

REFERÈNCIES

Per a l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Difusió-català

Reptiles y mamíferos: mismo origen, diferentes historias

¿Los mamíferos evolucionaron de los reptiles? Pues la verdad es que no. Reptiles y mamíferos tienen historias evolutivas independientes que se separaron poco después de la aparición de lo que se conoce como huevo amniota, que permitía que las crías de estos animales nacieran fuera del agua. Anteriormente hablamos sobre el origen de los vertebrados y sobre cómo éstos salieron del mar para caminar por tierra por primera vez. En esta entrada explicaremos cómo los antepasados de reptiles y mamíferos, los AMNIOTAS, se independizaron del medio acuático y se convirtieron en el grupo dominante de animales terrestres.

EL HUEVO AMNIOTA

La característica que une a reptiles y mamíferos en un solo grupo es el huevo amniota. Mientras que los huevos de los anfibios son relativamente pequeños y solo presentan una capa interna, los huevos de los amniotas son bastante más grandes y presentan varias membranas protegiendo al embrión y manteniéndolo en un medio acuoso. La capa más externa es la cáscara del huevo, que aparte de ofrecer protección física al embrión, evita la pérdida de agua y su porosidad permite el intercambio de gases.  Debajo de la cáscara encontramos las siguientes membranas:

512px-Crocodile_Egg_Diagram.svgEsquema del huevo de un cocodrilo: 1. cáscara del huevo 2. saco vitelino 3. vitelo (nutrientes) 4. vasos sanguíneos 5. amnios 6. corion 7. aire 8. alantoides 9. albúmina (clara del huevo) 10. saco amniótico 11. embrión 12. líquido amniótico. Imagen de Amelia P.
  • Corion: Es la primera membrana interna que encontramos, proporciona protección y, junto con el amnios, forman el saco amniótico. Además, al estar en contacto con la cáscara, participa en el intercambio de gases, llevando oxígeno del exterior al embrión y dióxido de carbono del embrión al exterior.
  • Amnios: Membrana que envuelve al embrión y forma parte del saco amniótico. Ésta proporciona un ambiente acuoso al embrión y lo conecta con el saco vitelino (estructura que proporciona alimento y que también encontramos en peces y anfibios).
  • Alantoides: La tercera capa, sirve como almacén de residuos nitrogenados y, junto con el corion, ayuda en el intercambio de gases.
512px-Amphibian_Egg_Diagram.svgEsquema del huevo de un anfibio: 1. cápsula gelatinosa 2. membrana vitelina 3. fluido perivitelino 4. vitelo 5. embrión. Imagen de Separe3g.

Este conjunto de membranas hace que los amniotas no tengan que volver al agua para poner los huevos. Además, a diferencia de los anfibios, los amniotas no pasan por la fase larvaria con branquias, sino que nacen directamente como adultos en miniatura, con pulmones y patas (los que tienen). Todo esto hizo que los primeros amniotas se independizaran completamente del medio acuático.

ORÍGEN DE LOS AMNIOTAS

Los primeros amniotas evolucionaron hace unos 312 millones de años a partir de tetrápodos reptiliomorfos. A finales del Carbonífero desaparecieron muchos de los bosques tropicales donde vivían los anfibios primitivos, dando lugar a un clima más frío y árido. Esto acabó con muchos de los grandes anfibios del momento, dejando espacio para que los amniotas ocupasen los nuevos hábitats.

Solenodonsaurus1DBReconstrucción de Solenodonsaurus janenschi, uno de los candidatos a ser el primer amniota, que vivió hace 320-305 millones de años en la actual República Checa. Recontrucción de Dmitry Bogdanov.

CARACTERÍSTICAS

Estos primeros amniotas presentaban un seguido de características que los diferenciaban de sus antepasados semiacuáticos:

  • Garras córneas (los anfibios no tienen garras) i piel queratinizada que reduce la pérdida de agua .
  • Intestino grueso más grande y mayor densidad de túbulos renales para aumentar la reabsorción de agua.
  • Glándulas lacrimales especializadas y una tercera membrana en el ojo (membrana nictitante) que mantienen la humedad ocular.
  • Pulmones más grandes.
  • Pérdida de la línea lateral (órgano sensorial presente en peces y anfibios).

El esqueleto y la musculatura también evolucionaron ofreciendo una mayor movilidad y agilidad en un hábitat terrestre. Los primeros amniotas presentaban las costillas cerradas por delante mediante el esternón, haciendo que sus órganos internos estuviesen mejor sujetos, y un conjunto de receptores musculares que les conferían una mayor agilidad y coordinación durante la locomoción.

CRÁNEOS AMNIOTAS

Tradicionalmente, se clasificaban a los diferentes amniotas en base a la estructura de su cráneo. La característica que se miraba era la presencia de aperturas temporales (fenestras), según las cuáles teníamos tres grupos:

  • Anápsidos (“sin arcos”): No presentan ninguna apertura temporal (tortugas).
Skull_anapsida_1Esquema de un cráneo anápsido, de Preto(m).
  • Sinápsidos (“arcos fusionados”): Presentan una sola apertura temporal inferior (mamíferos).
Skull_synapsida_1Esquema de un cráneo sinápsido, de Preto(m).
  • Diápsidos (“dos arcos”): Presentan dos aperturas temporales (reptiles, incluyendo las aves).
Skull_diapsida_1Esquema de un cráneo diápsido, de Preto(m).

Antes se creía que los primeros amniotas presentaban un cráneo anápsido (sin oberturas, como las tortugas) y que posteriormente se separaron en sinápsidos y diápsidos (las aperturas temporales formaban unos “arcos” que proporcionaron nuevos puntos de anclaje para la musculatura mandibular). Aun así, se ha visto que esta clasificación en tres grupos no es válida.

Aunque aún se cree que los primeros amniotas eran anápsidos, actualmente se piensa que éstos, muy poco después de su aparición, se separaron en dos linajes diferentes: los sinápsidos (clado Synapsida) y los saurópsidos (clado Sauropsida).

SYNAPSIDA

Este linaje incluye a los mamíferos y a sus antepasados amniotas. Aunque los primeros sinápsidos como Archaeothyris externamente se parecieran a una lagartija, estaban más emparentados con los mamíferos y compartían con éstos la apertura temporal única por donde pasaban los músculos mandibulares.

Archaeothyris.svgDibujo del cráneo de Archaeothyris, el que se cree que fue uno de los primeros sinápsidos que vivió hace unos 306 millones de años en Nueva Escocia. Dibujo de Gretarsson.

Antes, los antepasados de los mamíferos eran conocidos como “reptiles mamiferoides”, ya que se creía que los mamíferos habían evolucionado de reptiles primitivos. Actualmente está aceptado que los sinápsidos forman un linaje independiente de los reptiles, y que comparten un seguido de tendencias evolutivas que llevan hasta los mamíferos modernos: la aparición de diferentes tipos de dientes, la mandíbula formada por un único hueso, la posición más vertical de las patas respecto el cuerpo, etc…

Dimetrodon_grandisReconstrucción de Dimetrodon grandis, uno de los sinápsidos más conocidos, de hace unos 280 millones de años. Reconstrucción de Dmitry Bogdanov.

Aunque la mayoría de mamíferos actuales no pone huevos y pare crías vivas, todos los grupos durante el desarrollo embrionario mantienen las tres membranas características de los amniotas (amnios, corion y alantoides).

SAUROPSIDA

Los saurópsidos incluyen a los reptiles actuales y a sus antepasados y parientes amniotas. Actualmente en muchos trabajos científicos se utiliza la palabra “saurópsido” en vez de “reptil” cuando se discute de filogenia, ya que dentro de saurópsido se incluye también a las aves. Los primeros saurópsidos probablemente eran anápsidos, y poco después de su aparición se separaron en dos grupos: los Parareptilia que conservaban el cráneo anápsido, y los Eureptilia que incluyen a los diápsidos (los reptiles y aves actuales).

Traditional_ReptiliaÁrbol evolutivo de los vertebrados actuales, en el que se marca en verde a los grupos antiguamente considerados reptiles. Como se ve, la concepción tradicional de "reptil" incluye a los antepasados de los mamíferos y excluye a las aves. Imagen de Petter Bøckman.

Los diápsidos actualmente son el grupo de vertebrados terrestres más diversificado. Éstos se multiplicaron en muchísimas especies a finales del Pérmico (hace unos 254 millones de años), justo antes del Mesozoico (la Era de los Reptiles). Éstos se pueden dividir en dos grandes grupos: los Lepidosaurios y los Arcosaurios, ambos con representantes actuales.

LEPIDOSAURIA: PEQUEÑOS Y NUMEROSOS

Los lepidosaurios (literalmente “reptiles con escamas”) aparecieron a principios del Triásico (hace unos 247 millones de años) y, aunque la mayoría no alcanzó tamaños muy grandes, actualmente son el grupo de reptiles no aviares más numeroso. Éstos se caracterizan por presentar una hendidura cloacal transversa, por presentar escamas superpuestas y mudar la piel entera o a trozos y por otros caracteres esqueléticos.

Rat_Snake_moulted_skinMuda entera de la piel de una serpiente rata. Foto de Mylittlefinger.

Los lepidosaurios actuales pertenecen a dos órdenes diferentes:

  • Orden Rhynchocephalia: Incluyen a las dos especies de tuataras actuales. Se consideran fósiles vivientes porque presentan cráneos y características parecidas a las de los diápsidos mesozoicos. Actualmente se encuentran en grave peligro de extinción.
Sphenodon_punctatus_(5)Foto de un tuatara (Sphenodon punctatus), de Tim Vickers.
  • Orden Squamata: Los escamosos actuales incluyen iguanas, camaleones, salamanquesas, lagartijas, serpientes y otros lagartos sin patas. Con más de 9000 especies actuales los escamosos son un grupo muy numeroso, con un gran abanico de adaptaciones y estrategias de supervivencia.
Sin títuloFotos de algunos escamosos de izquierda a derecha y de arriba a abajo: Iguana verde (Iguana iguana, de Cary Bass), cobra real (Ophiophaga Hannah, de Michael Allen Smith), lagarto gusano de dos patas (Bipes biporus, de Marlin Harms) y camaleón de la Índia (Chamaeleo zeylanicus, de Shantanu Kuveskar).

ARCHOSAURIA: ANTIGUOS REYES

Los arcosaurios (literalmente “reptiles dominantes”) fueron el grupo de animales terrestres dominantes durante el Mesozoico. Éstos conquistaron todos los hábitats posibles hasta la extinción de la mayoría de grupos a finales del Cretácico. Algunos de los grupos que se extinguieron fueron los pseudosuquios (parientes de los cocodrilos actuales, orden Crocodylia), los pterosaurios (grandes reptiles voladores) y los dinosaurios (excepto las aves actuales, clado Aves).

Massospondylus_Skull_Steveoc_86Dibujo del cráneo del dinosaurio Massospondylus en el que se ven las diferentes oberturas que caracterizan a los arcosaurios diápsidos. Imagen de Steveoc 86.

Como podéis ver, los dos grupos de arcosaurios actuales no podrían ser más diferentes. Aun así, los cocodrilos y las aves comparten un antepasado común, y están más emparentados entre ellos que con el resto de reptiles.

Yellow-billed_stork_kazingaFoto de dos especies de arcosaurios actuales; un cocodrilo del Nilo (Crocodylus niloticus) y un tántalo africano (Mycteria ibis). Foto de Tom Tarrant.

¿Y LAS TORTUGAS?

Las tortugas (orden Testudines) siempre han sido un grupo difícil de clasificar. Las tortugas son los únicos amniotas actuales que presentan un cráneo anápsido, sin ninguna apertura post-ocular. Por eso, antiguamente se las había clasificado como descendientes de amniotas primitivos (clado Anapsida, actualmente en desuso) o como saurópsidos anápsidos primitivos (dentro del clado Parareptilia).

KONICA MINOLTA DIGITAL CAMERAEsqueleto de la tortuga extinta Meiolania platyceps que vivió en Nueva Caledonia hasta hace 3000 años. En esta foto se aprecia el cráneo compacto y sin oberturas temporales. Foto de Fanny Schertzer.

Estudios moleculares recientes han desvelado que las tortugas son realmente diápsidos que perdieron las aperturas temporales secundariamente. Lo que aún divide la comunidad científica es si los testudinios están más emparentados con los Lepidosauromorfos (lepidosaurios y sus antepasados) o con los Arcosauromorfos (arcosaurios y sus antepasados).

Leopard_tortoiseEjemplar de tortuga leopardo (Stigmochelys pardalis) de Tanzania. Foto de Charles J. Sharp.

Como habéis podido ver, la evolución de los amniotas es un tema muy complejo. Esperamos que con esta entrada haya quedado claro que:

  1. Los mamíferos (sinápsidos) provienen de un linaje evolutivo diferente al de los reptiles (saurópsidos).
  2. Los saurópsidos incluyen a los “reptiles” tradicionales (lepidosaurios, arcosaurios y tortugas) y a las aves (dentro de los arcosaurios).
  3. Aún queda mucho por investigar sobre la posición de las tortugas (testudinios) dentro del árbol evolutivo de los saurópsidos.
Figure_29_04_03Esquema modificado sobre las relaciones evolutivas entre los diferentes grupos de amniotas.

REFERENCIAS

Para la elaboración de esta entrada se han utilizado las siguientes fuentes:

Difusió-castellà

¿Qué está acabando con las tortugas marinas?

La semana pasada vimos con detalle cómo es la vida de una tortuga marina. ¿Te perdiste el artículo? ¡Pues haz clic aquí para leerlo! Esta semana continúo hablando de estos maravillosos animales, pero centrándome en los peligros que están acabando con ellas, tanto naturales como humanos, y qué acciones podemos hacer nosotros para salvarlas. 

PELIGROS NATURALES

Las tortugas marinas se ven amenazadas por una variedad de factores naturales y antrópicos. Entre los factores naturales se incluyen la pérdida de huevos debido a la inundación de las playas o la erosión, la depredación en todas las fases del ciclo, las temperaturas extremas y algunas enfermedades.

Pérdida de huevos

Las mareas altas y las tormentas pueden provocar la pérdida de los huevos por diferentes motivos: los huevos quedan inundados, se erosiona o aumenta la altura de la playa o bien los nidos son dispersados por el agua. Además de ésto, varios animales pueden depredarlos.

seaturtleeggs
La pérdida de huevos se puede producir por diferente motivos (Foto: PaddleAndPath).

Depredación de tortugas

Aunque las pequeñas tortugas salen del nido normalmente de noche, el riesgo de ser comido por un depredador no es cero, pues forman parte de la dieta de mapaches, aves, cangrejos, tiburones y otros peces. Los jóvenes y adultos también son consumidos por algunos animales, principalmente tiburones y otros peces de grandes dimensiones, aunque el impacto no es tan grande como en las primeras fases. Lee el artículo de la semana pasada para saber cuántas tortugas mueren de viejas de cada 10.000 huevos. ¡La cifra te va a sorprender!

Els crancs poden menjar-se les tortugues acabades de sortir de l'ou (Foto: Gnaraloo Turtle Conservation Program, Creative Commons).
Los cangrejos pueden comerse a las tortugas acabadas de salir del huevo (Foto: Gnaraloo Turtle Conservation Program, Creative Commons).

Hipotermia

Por debajo los 8-10ºC las tortugas quedan flotando por la superficie en un estado de letargo, pero por debajo de los 5-6ºC la tasa de mortalidad es importante.

Enfermedades

Las infecciones parasíticas son comunes en las tortugas. Más del 30% de las tortugas boba del Atlántico tienen trematodos que infectan su sistema cardiovascular. Éstas, a la vez, disminuyen las defensas y permiten que algunas bacterias (como Salmonella y E. coli) puedan infectarlas. Los blooms de dinoflagelados también son un problema para ellas, pues contienen toxinas que les provocan problemas de salud.

PELIGROS ANTRÓPICOS 

Son 4 los principales peligros antrópicos para las tortugas marinas: la explotación comercial de huevos y tortugas para consumo humano, la destrucción de las playas de puesta debido a la urbanización y el turismo, la contaminación y las capturas accidentales en la pesca. Aquí, veremos alguna más.

Caza furtiva

La caza furtiva afortunadamente no está extendida en todo el mundo, pero en algunos países puede ser especialmente importante. Son cazadas por su carne y cartílagos o por sus conchas (para decoración y joyería). Los huevos también son objeto de furtivismo.

Tortugues marines comissades per la policia de les Filipines (Foto: Mongabay).
Tortugas marinas decomisadas por la policía de Filipinas (Foto: Mongabay).
Venta d'ous de tortuga marina (Foto: OceanCare).
Venta de huevos de tortuga marina (Foto: OceanCare).

Destrucción de las playas de puesta

La construcción de infraestructuras para proteger los bienes de la costa produce que las hembras no puedan acceder a las playas de puesta, además de producir su erosión. Las regeneraciones de playas para combatir la erosión de las playas también les afecta, ya sea porque la nueva playa tapa los nidos, por la muerte causada por el dragado del fondo marino, por el hecho de compactar excesivamente la arena o porque se regenera con materiales diferentes de los originales (lo que puede provocar, por ejemplo, una reducción en la difusión de los gases). Las molestias causadas por el aumento del turismo también hay que tenerlas en cuenta.

Contaminación y residuos

No es muy conocido si los contaminantes, como fertilizantes y pesticidas, tienen un efecto directo sobre las tortugas, pero se sabe que entre los indirectos hay la degradación de sus hábitats, pues un exceso de nutrientes causa un aumento de las algas, que pueden afectar su salud.

Los residuos sólidos flotantes también son un problema para ellas. Se han encontrado ejemplares de tortugas con plásticos en el estómago, pues muchas veces confunden las bolsas de plástico por medusas, lo que obstruye los intestinos y les provoca la muerte. Pero no sólo los ingieren, sino que también a menudo quedan atrapados en objetos como las anillas de las latas de refresco o redes, de manera que produce una deformación en su crecimiento.

La ingesta de plàstics (Foto: Fethiyetimes).
La ingestión de plásticos obstruye sus intestinos y les provoca la muerte (Foto: Fethiyetimes).

Capturas accidentales en la pesca

Las tortugas se ven afectadas por las capturas accidentales en la pesca.

Las redes de deriva, aunque están prohibidas en aguas españolas, se continúan utilizando y se sabe que causan la muerte por asfixia a más de un centenar de tortugas cada año por cada barco.

La pesca con palangre tiene un impacto especialmente importante. En aguas españolas, cada año se capturan entre 15.000 y 20.000 ejemplares. Aunque se suelen devolver vivas, se llevan de regalo un anzuelo enganchado, de manera que muchas acaban muriendo posteriormente por heridas. Aquí puedes leer una revisión sobre los métodos para reducir las capturas accidentales en la tortuga boba en la pesca de palangre. 

La pesca de palangre captura entre 15.000 i 20.000 exemplars cada any en aigües espanyoles (Foto: Phys).
La pesca de palangre captura entre 15.000 y 20.000 ejemplares cada año en aguas españolas (Foto: Phys).

La pesca de arrastre también tiene un gran impacto, pero depende del tiempo que esté bajo del agua. La mortalidad cuando el tiempo es inferior a los 50 minutos es del 0%, mientras que si supera los 90%, es del 70%. Ésto se explica por la capacidad respiratoria de estos animales.

Cambio global

La acidificación de los océanos debido a la continua acumulación de dióxido de carbono puede tener un impacto importante en las poblaciones de tortugas, pues éstas podrían ver reducida la calidad de sus fuentes de alimentos.

El aumento del nivel del mar debido al cambio global se cree que tendrá un efecto negativo sobre las tortugas marinas, pues amenaza la existencia de las playas, hábitats de máxima importancia para las tortugas, pues es donde hacen las puestas. El Parque Nacional de Zakynthos (Grecia) es la zona más importante de puesta para la tortuga boba (Caretta caretta) en el Mediterráneo. Un estudio realizado por el mismo Parque y la Universidad del Egeo (Grecia) ha determinado que el aumento del nivel del mar pone en peligro a las poblaciones de esta especie debido a la reducción del espacio disponible para realizar la puesta en las playas. Según los modelos, con un aumento del nivel del mar de 0,2 m, la pérdida de playa oscilará entre 0,8 y 15,9 m; mientras que con un aumento de 0,5; 1,0 o 2,0 m, oscilará respectivamente entre 4,9-25,2; 10,8-37,3 y 23,2-80,8 m. En las playas de este Parque Natural, de acuerdo con estos escenarios, la perdida de las playas oscilará entre un 44 y 94%, aunque quedarán totalmente inundadas en el caso de que es cumpla el escenario de 2 m de aumento.

Además, el aumento de la temperatura afectaría al crecimiento y relación de sexos, pues el sexo viene determinado por la temperatura de incubación: por debajo de los 29ºC predominan los machos y por encima las hembras, aunque si es superior a los 33ºC, el 100& de las tortugas serán hembras. Así pues, el cambio global tendrá como consecuencia el aumento del número de hembras.

¿CÓMO LAS PUEDO AYUDAR?

  • Evita cualquier actividad o comportamiento que pueda molestar a las tortugas marinas. En el caso de que se sientan molestadas, observarás que intentan abandonar la zona, que hacen una inmersión precipitada y que hacen movimientos natatorios bruscos.
  • Reduce la velocidad de la embarcación si ves cualquier elemento que pueda ser una tortuga marina. En el caso de serlo, evita cualquier maniobra que pueda ponerlas en peligro.
  • Recoge los restos de redes y basura que encuentres, aunque no sean tuyos. Así podrás evitar la muerte de las tortugas y otros animales.
  • En el caso de que el animal esté en peligro, llama de entrada al teléfono de emergencias de tu país. Para el caso de España, llama al 112. De todas formas, hay algunas cosas que puedes hacer mientras no llegan los veterinarios:
    • Tortuga con el caparazón roto o heridas abiertas: cubrir las heridas con un trapo húmedo de agua y yodo (no aplicarlo en ojos, orejas ni nariz).
    • Tortugas ahogadas: mantenerla durante 5 minutos con la parte ventral hacia arriba y el cuerpo inclinado (la cabeza tiene que quedar hacia abajo) y moviendo las aletas. Algunas pueden ser reanimadas de esta manera. Cuando haya expulsado el agua, girarla.
    • Tortuga con plásticos en la boca: extraer el plástico con mucho cuidado y llamar a emergencias.
    • Tortuga muerta: no manipular el animal y llamar directamente a emergencias.
    • Tortuga atrapada en un azuelo: no estirar del anzuelo y cortar el hilo dejando un mínimo de 30 cm.
  • Avisa a las administraciones competentes de la localización de posibles nidos de tortuga, con el objetivo de que puedan protegerlo. Hay algunas pistas que te ayudaran a identificarlos:
    • Rastros de que una tortuga se ha arrastrado por la arena, normalmente tienen forma de V, con el nido situado en el vértice.
    • Depresión en la arena, que indica que los huevos han eclosionado, de la cual salen lineas que forman una V en dirección al mar.
    • Observación de una tortuga realizando una puesta.
    • Restos de huevos o ejemplares recién nacidos.

REFERENCIAS

  • Consejería de Medio Ambiente de la Junta de Andalucía (2014). Varamientos de Especies Marinas Amenazadas. Guías prácticas voluntariado ambiental.
  • Gray, J (1997). Marine biodiversity: patterns, threats and conservation needs. Biodiversity and Conservation 6, 153-175
  • Hamann, M et al. ‘Climate Change And Marine Turtles’. The Biology Of Sea Turtles. Volume III. Jeanette Wyneken, Kenneth J. Lohmann and John A. Musick. 1st ed. New York: CRC Press, 2013. 353-378. Print.
  • Harrould-Kolieb, E. & Savitz, J. (2009). Acidificación: ¿Cómo afecta el CO2 a los océanos? Oceana
  • Ministerio de Agricultura, Alimentación y Medio Ambiente. Guía de buenas prácticas en las Zonas Especiales de Conservación de ámbito marino de Canarias. España. http://www.magrama.gob.es/es/costas/temas/proteccion-medio-marino/201311_guia_bbpp_web_tcm7-229984.pdf
  • Oceana (2006). Las tortugas marinas en el Mediterráneo. Amenazas y soluciones para la supervivencia. 38 pp.
  • Otero, M., Garrabou, J., Vargas, M. 2013. Mediterranean Marine Protected Areas and climate change: A guide to regional monitoring and adaptation opportunities. Malaga, Spain: IUCN. 52 pages.
  • Shigenaka, G (2010). Oil and Sea Turtles. Biology, planning and response. NOAA
  • Smith, T & Smith R (2007). Ecología. Pearson Educación (6 ed.)
  • Velegrakis, A., Hasiotis, T., Monioudi, I., Manoutsoglou, E., Psarros, F., Andreadis, O. and Tziourrou, P., (2013). Evaluation of climate change impacts on the sea-turtle nesting beaches of the National Marine Park of Zakynthos Protected Area. Med-PAN North Project, Final report, 81 pp.

Difusió-castellà

Què està acabant amb les tortugues marines?

La setmana passada vam veure en detall com és la vida d’una tortuga marina. Et vas perdre l’article? Doncs fes clic aquí per llegir-lo! Aquesta setmana continuo parlant sobre aquests meravellosos animals, però centrant-me en els perills que estan acabant amb elles, tant naturals com humans, i quines accions podem fer nosaltres per salvar-les.

PERILLS NATURALS

Les tortugues marines es veuen amenaçades per una varietat de factors naturals i antropogènics. Entre els factors naturals s’hi inclouen la pèrdua d’ous degut a la inundació de les platges o l’erosió, la depredació en totes les fases del cicle, les temperatures extremes i algunes malalties.

Pèrdua d’ous

Les marees altes i les tempestes poden provocar la pèrdua dels ous per diferents motius: els ous queden inundats, s’erosiona o augmenta l’alçada de la platja, o bé els nius són dispersats per l’aigua. A més d’això, diversos animals poden depredar-los.

seaturtleeggs
La pèrdua d’ous es pot produir per diferents motius (Foto: PaddleAndPath).

Depredació de tortugues

Tot i que les petites tortugues surten del niu normalment de nit, el risc de ésser menjat per un depredador no és zero, doncs formen part de la dieta d’óssos rentadors, ocells, crancs, taurons i altres peixos. Els joves i adults també són consumits per alguns animals, principalment taurons i altres peixos de grans dimensions, tot i que el impacte no és tant gran com en les primeres fases. Llegeix l’article de la setmana passada per saber quantes tortugues moren de velles per cada 10.000 ous! La xifra et sorprendrà!

Els crancs poden menjar-se les tortugues acabades de sortir de l'ou (Foto: Gnaraloo Turtle Conservation Program, Creative Commons).
Els crancs poden menjar-se les tortugues acabades de sortir de l’ou (Foto: Gnaraloo Turtle Conservation Program, Creative Commons).

Hipotèrmia

Per sota els 8-10ºC les tortugues queden flotant per la superfície en un estat de letargia, però per sota dels 5-6ºC la taxa de moralitat és important.

Malalties

Les infeccions parasítiques són comunes en les tortugues. Més del 30% de les tortugues babaues de l’Atlàntic tenen trematodes que infecten el seu sistema cardiovascular. Aquestes, a la vegada, disminueixen les seves defenses i permeten que alguns bacteris (com ara Salmonella i E. coli) puguin infectar-les. Els afloraments de dinoflagel·lats també són un problema per a elles, doncs contenen toxines que els provoquen problemes de salut.

PERILLS ANTROPOGÈNICS

Són 4 els principals perills d’origen antròpic per a les tortugues marines: l’explotació comercial d’ous i tortugues per consum humà, la destrucció de les platges de posta degut a la urbanització i el turisme, la contaminació i les captures accidentals en la pesca. Aquí, en veurem alguna més.

Caça furtiva

La caça furtiva afortunadament no és extensa a tot el món, però en alguns països pot ser especialment important. Són caçades per la seva carn i cartílags o per les seves closques (per a decoració i joieria). Els ous també són objecte de furtivisme.

Tortugues marines comissades per la policia de les Filipines (Foto: Mongabay).
Tortugues marines comissades per la policia de les Filipines (Foto: Mongabay).
Venta d'ous de tortuga marina (Foto: OceanCare).
Venta d’ous de tortuga marina (Foto: OceanCare).

Destrucció de les platges de posta

La construcció d’infraestructures per tal de protegir els béns de la costa produeix que les femelles no puguin accedir a les platges de posta, a més de produir la seva erosió. Les regeneracions de platges per combatre l’erosió de les platges també les afecta, ja sigui perquè la nova platja colga els nius, per la mort causada pel dragatge del fons marí, pel fet de compactar excessivament la sorra o perquè es regenera amb materials diferents als originals (el que pot provocar, per exemple, una reducció en la difusió dels gasos). Les molèsties causades per l’augment del turisme també s’han de tenir en compte.

Contaminació i residus

No es massa conegut si els contaminants, com ara fertilitzants i pesticides tenen un efecte directe sobre les tortugues, però se sap que entre els indirectes hi ha la degradació dels seus hàbitats, doncs un excés de nutrients causa un augment de les algues, que poden afectar la seva salut.

Els residus sòlids flotants també són un problema per a elles. S’han trobat exemplars de tortugues amb plàstics a l’estómac, doncs moltes vegades confonen les bosses de plàstic per meduses, el que obstrueix els intestins i els provoquen la mort. Però no només els ingereixen, sinó que també molt sovint queden atrapats en objectes com les anelles de les llaunes de refrescos o xarxes, de manera que produeix una deformació en el seu creixement.

La ingesta de plàstics (Foto: Fethiyetimes).
La ingesta de plàstics obstrueix els seus intestins i els causa la mort (Foto: Fethiyetimes).

Captures accidentals en la pesca

Les tortugues es veuen afectades per les captures accidentals en la pesca.

Les xarxes de deriva, tot i estar prohibides en aigües espanyoles, es continuen utilitzant i se sap que causen la mort per asfixia a més d’un centenar de tortugues cada any per cada vaixell.

La pesca amb palangre té un impacte especialment important. En aigües espanyoles, cada any es capturen entre 15.000 i 20.000 exemplars. Tot i que es tornen, s’emporten de regal un ham enganxat, de manera que moltes acaben morint posteriorment per ferides. Aquí pots llegir una revisió sobre els mètodes per reduir les captures accidentals en la tortuga babaua en la pesca amb palangre.

La pesca de palangre captura entre 15.000 i 20.000 exemplars cada any en aigües espanyoles (Foto: Phys).
La pesca de palangre captura entre 15.000 i 20.000 exemplars cada any en aigües espanyoles (Foto: Phys).

La pesca d’arrossegament també té un gran impacte, però depèn del temps que estiguin sota l’aigua. La mortalitat quan el temps era inferior als 50 minuts era del 0%, mentre que si superava els 90 minuts, era del 70%. Això s’explica per la capacitat respiratòria d’aquests animals.

Canvi global

L’acidificació dels oceans degut a la contínua acumulació de diòxid de carboni pot tenir un impacte important en les poblacions de tortugues, doncs aquestes podrien veure reduïda la qualitat de les seves fonts d’aliments.

L’augment del nivell del mar degut al canvi global es creu que tindrà un efecte negatiu sobre les tortugues marines, doncs amenaça l’existència de les platges, hàbitats de màxima importància per a les tortugues, doncs és on fan les postes. El Parc Nacional de Zakynthos (Grècia) és la zona més important de posta per la tortuga babaua (Caretta caretta) al Mediterrani. Un estudi realitzat pel mateix Parc i la Universitat de l’Egeu (Grècia) ha determinat que l’augment del nivell del mar posa en perill a les poblacions d’aquesta espècie degut a la reducció de l’espai disponible per fer la posta a les platges. Segons els models, amb un augment del nivell del mar de 0,2 m, la pèrdua de platja oscil·larà entre 0,8 i 15,9 m; mentre que amb un augment de 0,5; 1,0 o 2 m, oscil·larà respectivament entre 4,9-25,2; 10,8-37,3 i 23,2-80,8 m. En les platges d’aquest Parc Nacional, d’acord amb aquests escenaris, la pèrdua de platges oscil·larà entre un 44 i 94%, tot i que quedaran totalment inundades en el cas de que es compleixi l’escenari de 2 m d’augment.

A més, l’augment de la temperatura afectaria al creixement i relació de sexes, doncs el sexe ve determinat per la temperatura d’incubació: per sota dels 29ºC predominen els mascles i per sobre les femelles, tot i que si és superior als 33ºC llavors el 100% de les tortugues seran femelles. Així doncs, el canvi global tindrà com a conseqüència l’augment del nombre de femelles.

COM LES PUC AJUDAR?

  • Evita qualsevol activitat o comportament que pugui molestar a les tortugues marines. En cas de que se sentin molestes, observaràs que intenten abandonar la zona, que fan una immersió precipitada i que fan moviments natatoris bruscs.
  • Redueix la velocitat de l’embarcació si veus qualsevol element que pugui ser una tortuga marina. En cas de ser-ho, evita qualsevol maniobra que pugui posar-les en perill.
  • Recull les restes de xarxes i brossa que trobis, encara que no siguin teus. Així pots evitar la mort de les tortugues i altres animals.
  • En el cas de que l’animal estigui en perill, truca d’entrada al telèfon d’emergències del teu país. Pel cas d’Espanya, truca al 112. De totes maneres, hi ha algunes coses que pots fer mentre no arriben els veterinaris:
    • Tortuga amb la closca trencada o ferides obertes: cobrir les ferides amb un drap moll d’aigua i iode (no aplicar-ho als ulls, orelles ni nas).
    • Tortugues afogades: mantenir-la durant 5 minuts amb la part ventral cap amunt i el cos inclinat (el cap ha de quedar més avall) i movent-li les aletes. Algunes poden ser reanimades d’aquesta manera. Quan hagi expulsat l’aigua, girar-la.
    • Tortuga amb plàstics a la boca: extreure el plàstic amb molta cura i trucar a emergències.
    • Tortuga morta: no manipular a l’animal i trucar directament a emergències.
    • Tortuga enganxada en un ham: no estirar de l’ham i tallar el fil deixant un mínim de 30 cm.
  • Avisa a les administracions competents de la localització de possibles nius de tortuga, amb l’objectiu que puguin protegir-lo. Hi ha algunes pistes que et poden ajudar a identificar-los:
    • Rastres de que una tortuga s’ha arrossegat per la sorra, normalment tenen forma de V, amb el niu situat al seu vèrtex.
    • Depressió en la sorra, que indica que els ous han eclosionat, de la qual surten línies que formen una V en direcció al mar.
    • Observació d’una tortuga realitzant una posta.
    • Restes d’ous o exemplars nounats.

REFERÈNCIES

  • Consejería de Medio Ambiente de la Junta de Andalucía (2014). Varamientos de Especies Marinas Amenazadas. Guías prácticas voluntariado ambiental.
  • Gray, J (1997). Marine biodiversity: patterns, threats and conservation needs. Biodiversity and Conservation 6, 153-175
  • Hamann, M et al. ‘Climate Change And Marine Turtles’. The Biology Of Sea Turtles. Volume III. Jeanette Wyneken, Kenneth J. Lohmann and John A. Musick. 1st ed. New York: CRC Press, 2013. 353-378. Print.
  • Harrould-Kolieb, E. & Savitz, J. (2009). Acidificación: ¿Cómo afecta el CO2 a los océanos? Oceana
  • Ministerio de Agricultura, Alimentación y Medio Ambiente. Guía de buenas prácticas en las Zonas Especiales de Conservación de ámbito marino de Canarias. España. http://www.magrama.gob.es/es/costas/temas/proteccion-medio-marino/201311_guia_bbpp_web_tcm7-229984.pdf
  • Oceana (2006). Las tortugas marinas en el Mediterráneo. Amenazas y soluciones para la supervivencia. 38 pp.
  • Otero, M., Garrabou, J., Vargas, M. 2013. Mediterranean Marine Protected Areas and climate change: A guide to regional monitoring and adaptation opportunities. Malaga, Spain: IUCN. 52 pages.
  • Shigenaka, G (2010). Oil and Sea Turtles. Biology, planning and response. NOAA
  • Smith, T & Smith R (2007). Ecología. Pearson Educación (6 ed.)
  • Velegrakis, A., Hasiotis, T., Monioudi, I., Manoutsoglou, E., Psarros, F., Andreadis, O. and Tziourrou, P., (2013). Evaluation of climate change impacts on the sea-turtle nesting beaches of the National Marine Park of Zakynthos Protected Area. Med-PAN North Project, Final report, 81 pp.

Difusió-català

Com és la vida d’una tortuga marina?

Ja hem dedicat alguns articles anteriors a parlar sobre les tortugues marines. En concret, sobre la tortuga babaua (Caretta caretta). En les properes setmanes, em dedicaré a ampliar els continguts sobre aquests meravellosos animals marins. En concret, aquesta setmana estarà dedicat a explicar com és la vida d’una tortuga marina, especialment de la tortuga babaua, i la propera setmana tractarà sobre quines són les amenaces que posen en perill aquests animals i què hi podem fer nosaltres per salvar-les.

INTRODUCCIÓ

La tortuga babaua, tal com vam veure en aquest article, és una de les 7 tortugues marines del planeta. Té una distribució cosmopolita, essent la més abundant del Mediterrani, i es pot identificar per la presència d’una closca de entre 80 i 100 cm de longitud en forma de cor amb 5 escuts costals, de manera que el primer d’aquests està en contacte amb l’escut nucal (el de davant de tot de la closca). Està en perill d’extinció segons la IUCN (Unió Internacional per a la Conservació de la Naturalesa). La tortuga babaua s’alimenta principalment de plàncton gelatinós com meduses durant la fase oceànica, però pràcticament no en consumeix durant la fase nerítica, fase en la qual s’alimenten principalment de peix i calamars. A més, poden consumir aigua de mar perquè tenen unes glàndules especials de secreció de sal, situades a la part superior del crani. Com la resta de tortugues marines, no pot amagar ni el cap ni les aletes dins la closca.

Claus d'identificació de la tortuga babaua (Caretta caretta) (Foto extreta de MarineBio).
Claus d’identificació de la tortuga babaua (Caretta caretta) (Foto extreta de MarineBio).

COM ÉS LA VIDA D’UNA TORTUGA MARINA?

En les tortugues marines, els cicles reproductius són circadians, és a dir, es produeixen de manera regular al llarg del temps. Aquesta periodicitat depèn de cada espècie, però en el cas de la tortuga babaua sol ser bianual, és a dir, es reprodueixen aproximadament cada dos anys (o fins i tot cada tres). Tot i així, aquest cicle no és estricte, doncs hi ha factors que el poden reduir o ampliar, com ara la disponibilitat d’aliments o les malalties.

La conducta gregària en moltes espècies es deu a la capacitat de reconèixer els individus de la mateixa espècie. Per a fer-ho, en la majoria de casos utilitzen l’olfacte, tot i que també poden utilitzar la vista o el so. Durant el festeig, quan la femella accepta al mascle, aquest li fa mossegades al coll i a les extremitats anteriors i ella es col·loca per a la còpula. El mascle es situa sobre seu i la reté amb les ungles de les extremitats anteriors (en el cas de la babaua, n’hi ha dues en cada una). L’aparellament té lloc al mar i es sol realitzar normalment durant les primeres hores del dia. A més, una mateixa femella pot ser fecundada per diferents mascles.

Aparellament de la tortuga babaua (Caretta caretta) (Foto: OceanWide Images).
Aparellament de la tortuga babaua (Caretta caretta) (Foto: OceanWide Images).

El moment en que té lloc la posta està influït per les fases lunars, les marees, la temperatura i el vent, tot i que es sol produir a l’estiu en platges sorrenques. Les femelles tornen a pondre els ous a la mateix platja on van néixer, provinents de les zones d’alimentació, que poden estar a centenars o milers de quilòmetres de distància. Per orientar-se i arribar a la platja on van néixer, es creu que utilitzen la memòria i s’ajuden de les corrents marines, els canvis de temperatura, dels senyals magnètics i el so i olor de la platja.

Segons les característiques de la platja, aquesta serà més o menys apta per a la posta de cada espècie de tortuga. En el cas de la tortuga babaua, aquestes prefereixen les platges obertes o badies, continentals o insulars, de poca profunditat, amb una pendent entre els 5-10º i amb un onatge tranquil, les quals estan protegides per la part terrestre per arbusts i per la part marina per barreres coral·lines o rocoses. A més, aquesta espècie, de la totalitat de la platja, sol pondre els ous al final de la primera terrassa, en llocs lliures de vegetació i ho solen fer al primer intent, és a dir, no van d’un punt a un altre buscant el millor lloc. El que és comú en totes les tortugues és que la posta té lloc per sobre de la línia de marea màxima, doncs l’aigua pot produir l’avortament dels ous.

Un cop localitzat el lloc, amb les aletes anteriors fan una cavitat per encabir-hi el seu cos (anomenada llit) i a continuació, amb les aletes posteriors, excaven el niu i hi dipositen els ous. Durant el període comprès entre la sortida de l’aigua i l’excavació del niu, l’animal és especialment sensible i podria interrompre el procés en qualsevol moment si se sent molestada.

Les tortugues marines no realitzen una sola posta a l’any, sinó que té lloc vàries vegades en cada cicle de reproducció. En el cas de la babaua, ho solen fer entre 2 i 4 vegades a l’any, amb uns 100 ous d’uns 40 grams a cada posta (aproximadament la posta pesa uns 4 kg). Tot i així, hem de tenir present que el número d’ous produïts per la tortuga babaua està limitat per la capacitat d’emmagatzematge d’ous de la femella, que està relacionada amb la mida d’aquesta. S’ha vist que entre posta i posta en un mateix cicle no necessàriament hi ha aparellament. Això significa que poden emmagatzemar l’esperma al seu interior i aprofitar-lo més tard per a fecundar més òvuls (el que es coneix com a fecundació retardada).

Tortuga en la fase de posta dels ous (Foto: Brandon Cole).
Tortuga en la fase de posta dels ous (Foto: Brandon Cole).

Un cop realitzada la posta, els ous s’incuben durant 50-60 dies enterrats a la part seca de la platja (en la babaua). L’eclosió és sincronitzada i quan surten a la superfície en pocs minuts ja estan orientades, gràcies al pendent de la platja, el soroll de les onades i a la llum de la lluna sobre el mar; per dirigir-se cap al mar.

Cria d'una tortuga babaua (Caretta caretta) sortint de l'ou (Foto: Rewilding Europe).
Cria d’una tortuga babaua (Caretta caretta) sortint de l’ou (Foto: Rewilding Europe).

Durant els primers dies de vida presenten una gran flotabilitat, de manera que fins que no transcorre un temps no es tornen bussejadores. En les primeres setmanes de vida, són transportades per les corrents marines o girs, on l’aliment és abundant, de manera que tenen una vida pelàgica. Si les tortugues són mascles, el més probable és que mai més toquin terra.

Quan neixen, la closca és tova i, per aquest motiu, el nombre d’exemplars que sobreviurà serà només del 10% dels que surtin de l’ou degut al gran nombre de depredadors, com ara crancs, taurons i gavines. Durant el primer any tampoc deixen de ser vulnerables, doncs només entre el 10 i el 30% dels animals aconseguirà sobreviure. Any rere any, la taxa de mortalitat es va reduint, degut a l’augment considerable de la mida i a l’enduriment de la closca. Un estudi estima que de cada 10.000 ous, només 10 arribaran a adultes i una morirà de vella.

Adult de tortuga babaua (Caretta caretta) (Foto: Deviant Art).
Adult de tortuga babaua (Caretta caretta) (Foto: Deviant Art).

Les tortugues marines són grans migradores, especialment quan estan en la fase juvenil. Un cop han abandonat la platja on han nascut, durant els propers 10 anys de la seva vida estaran viatjant grans distàncies. No serà fins que siguin madures sexualment, entorn als 15-30 anys, que els seus moviments es reduiran, tot i que continuen recorrent grans distàncies. Les migracions es produeixen entre les zones d’alimentació i les zones d’aparellament i posta d’ous.

Després de tot això, el cicle torna a començar amb les noves postes.

REFERÈNCIES

  • Cardona L, A´ lvarez de Quevedo I, Borrell A, Aguilar A (2012) Massive Consumption of Gelatinous Plankton by Mediterranean Apex Predators. PLoS ONE 7(3): e31329. doi:10.1371/journal.pone.0031329
  • Consejería de Medio Ambiente de la Junta de Andalucía (2014). Varamientos de Especies Marinas Amenazadas. Guías prácticas voluntariado ambiental.
  • CRAM: Caretta caretta
  • Dodd, C. Kenneth, Jr. 1988. Synopsis of the biological data on the Loggerhead Sea Turtle Caretta caretta (Linnaeus 1758). U.S. Fish Wildl. Serv., Biol. Rep. 88(14). 110 pp.
  • IUCN: Caretta caretta 
  • Márquez, R (1996). Las tortugas marinas y nuestro tiempo. México: IEPSA
  • Smith, T & Smith R (2007). Ecología. Pearson Educación (6 ed.)

Difusió-català

La tortuga boba (Caretta caretta)

La prensa catalana se ha hecho eco hoy de la localización de una puesta de tortuga boba en una playa de Tarragona (Cataluña). Es por este motivo que esta entrada está dedicada a dar algunos detalles sobre las tortugas marinas y de esta especie concreta.

Hay más de 200 especies de tortugas en el mundo, pero de éstas sólo 7 son marinas y forman un grupo monofiletico, es decir, forman un grupo que incluyen a todos los descendientes de un ancestro común. Estas 7 especies de tortugas marinas son: tortuga laúd (Dermochelys coriacea), la tortuga verde (Chelonia mydas), la tortuga carey (Eretmochelys imbricata), la tortuga boba(Caretta caretta), la tortuga kempi (Lepidochelis kempii), la tortuga olivácea (Lepidochelis olivacea) y la tortuga plana de Austrália (Natator depressus).La tortuga boba(Caretta caretta) es una especie presente en todos los mares y océanos del planeta, encontrándose tanto en mar abierto como en aguas poco profundas. Se puede diferenciar del resto por la presencia de una concha en forma de corazón con 5 escudos costales, de coloración entre marrón y roja, con la parte ventral (plastrón) de color amarillo, y con dos uñas por aleta.
carettaConviene no confundirla con la tortuga verde, la cual presenta sólo 4 escudos costales, aunque esta segunda habita en mares tropicales. Como el resto de tortugas marinas, no pueden introducir ni la cabeza ni las aletas en la concha. La figura siguiente permite la diferenciación de estas dos especies.
tortugues

Está en peligro debido a la interacción con la pesca de palangre y de arrastre, aunque con el tiempo se han aplicado medidas para paliar los efectos.

Las tortugas hembras son las únicas que salen a la playa y lo hacen para poner los huevos. Se trata de una especie notablemente filopátrica, es decir, las hembras tienden a reproducirse en aquellas playas donde han nacido, aunque no pasa en todos los casos. Cuando una hembra tiene que poner los huevos, sale de noche y excava un nido con las patas traseras de 50 cm de profundidad y pone entorno a 100 huevos. Pasados los 60 días, salen los nuevos individuos y miden entre 5 y 6 cm. Generalmente, eclosionan el 80% de los huevos, aunque es variable. Al no nacer todas las tortugas de golpe, hasta que no han eclosionado la mayoría, se esperan para salir a la superficie y lo hacen dirigiéndose hacia donde disminuye la temperatura (es decir, hacia arriba). Al salir a la superficie se dirigen haca el mar utilizando la luz de la luna. Es por este motivo que, como utilizan la luz, muchas veces se encuentran tortugas dirigiéndose hacia los paseos marítimos ya que la luz es más fuerte que el reflejo de la luna en el agua.

Esta entrada se ha elaborado consultando las siguientes fuentes:

Licencia Creative Commons
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.