Arxiu d'etiquetes: rèptil

Tuatara: reintroducción de un fósil viviente

En Nueva Zelanda existe un reptil cuyo linaje surgió en la época de los dinosaurios. Aunque su aspecto externo se parece al de un lagarto, el tuatara (cuyo nombre significa “espalda espinosa” en lengua maorí) es un animal con muchas características únicas que hacen que se le clasifique en un orden propio separado del resto de reptiles. En esta entrada os explicaremos las principales características de esta reliquia del pasado tan interesante como amenazada.

ORIGEN Y EVOLUCIÓN

Los tuataras son unos reptiles inusuales cuyo linaje se remonta a hace 240 millones de años, a mitades del periodo Triásico. Los tuataras son lepidosaurios, aunque forman un linaje distinto a los escamosos, por lo que se encuentran en su propio orden, los rincocéfalos (orden Rhynchocephalia). Muchas especies florecieron durante el Mesozoico, aunque prácticamente todas fueron reemplazadas por los escamosos. A finales del Mesozoico solo quedaba una familia, los Sphenodontidae.

homoeosaurus-min
Fósil de Homoeosaurus, un pariente extinto de los tuataras. Foto de Haplochromis.

De todos los esfenodóntidos que existieron, solo los tuataras han sobrevivido hasta la actualidad. Tradicionalmente se consideraba que los tuataras incluían dos especies: el tuatara común (Sphenodon punctatus) y el tuatara de la Isla Brothers (Sphenodon guntheri), aunque análisis recientes han popularizado la idea de que el tuatara es una única especie, S. punctatus.

ANATOMÍA DEL TUATARA

Como ya hemos comentado, los tuataras se parecen externamente a un lagarto, teniendo cierto parecido con las iguanas. Los machos de tuatara son mayores que las hembras, llegando a los 61 cm de longitud y el quilo de peso, mientras que éstas solo alcanzan los 45 cm y el medio quilo. Los tuataras presentan una hilera de espinas en el dorso que les confiere su nombre común. Ésta es mayor en los machos, y puede erizarse para exhibirse.

30-ish_male_tuatara-min
Foto hecha por KeresH de un joven macho de tuatara.

Lo que realmente distingue a los tuataras es su anatomía interna. El resto de reptiles han modificado mucho la estructura de su cráneo, pero los tuataras han conservado la estructura diápsida original sin muchos cambios. Mientras que cocodrilos y tortugas han desarrollado cráneos macizos, los tuataras conservan amplias aperturas temporales, y aunque los escamosos han desarrollado cráneos y mandíbulas muy flexibles, los tuataras mantienen un cráneo rígido. Además, a diferencia de la mayoría de reptiles, los tuataras no presentan oídos externos.

tuatara_skull-2-min
Imagen modificada del dibujo de Nobu Tamura sobre el cráneo del tuatara. En él vemos las principales características que lo distinguen: 1. Premaxilar en forma de pico, 2. Dientes acrodontos fusionados a las mandíbulas, 3. Amplias aperturas temporales típicamente diápsidas y 4. Apertura parietal o pineal.

El nombre Rhynchocephalia significa “cabeza de pico” y se refiere a la estructura de pico de su premaxilar. Los tuataras también son de los pocos reptiles con dientes acrodontos, los cuáles se encuentran fusionados al maxilar y la mandíbula y no se renuevan. Además, presentan un movimiento mandibular único tipo sierra, moviendo la mandíbula adelante y atrás.

Vídeo de YouOriginal, de unos tuataras en cautividad alimentándose. En este vídeo podemos apreciar el movimiento singular de la mandíbula.

Finalmente, una de las características anatómicas más increíbles de los tuataras es que éstos conservan el ojo parietal o pineal. Ésta es una estructura reminiscente de los primeros tetrápodos, conectada con la glándula pineal y que está involucrada en la regulación de la temperatura y los ritmos circadianos. Aunque algunos otros animales también lo conservan, los tuataras presentan un auténtico tercer ojo, con una retina y cristalino completos, aunque éste se va cubriendo de escamas con la edad.

HÁBITAT Y BIOLOGÍA

Los tuataras viven en unos treinta islotes en el estrecho de Cook, entre las dos islas principales de Nueva Zelanda. Además, la antigua especie S. guntheri se encuentra en la isla de Brothers, en la parte nororiental de isla Sur. Todas las poblaciones viven en zonas boscosas o de matorral costeras, con suelos blandos donde poder cavar. Además, en gran parte de su área de distribución existen colonias de aves marinas, cuyos nidos son aprovechados por los tuataras.

nz_southern_island_forest-min
Foto de Satoru Kikuchi de un típico bosque húmedo neozelandés.

Comparados con la mayoría de reptiles, los tuataras viven en hábitats relativamente fríos, con temperaturas anuales que oscilan entre los 5 y los 28°C. Los tuataras son principalmente nocturnos, saliendo de sus madrigueras normalmente por la noche, aunque a veces se les puede encontrar tomando el sol a pleno día (especialmente en invierno).

Los tuataras tienen pocos depredadores naturales. Aparte de algunos animales introducidos, sólo las gaviotas y algunas aves de presa presentan un peligro para estos reptiles. Su dieta, en cambio, es bastante variada. Siendo depredadores que esperan a que sus presas les pasen por delante, los tuataras se alimentan principalmente de invertebrados como escarabajos, grillos y arañas, aunque puede llegar a depredar pequeños lagartos, huevos y polluelos de aves, e incluso a tuataras más pequeños. Como sus dientes acrodontos no se renuevan, éstos se van desgastando al cabo del tiempo, por lo que los ejemplares más viejos suelen alimentarse de presas más blandas como caracoles y gusanos.

Los tuataras se reproducen entre enero y marzo (verano), momento en el que los territoriales machos compiten por las hembras, las cuáles pondrán unos 18-19 huevos entre octubre y diciembre (primavera). El sexo de las crías dependerá de la temperatura de incubación (machos a temperaturas más altas, hembras a más bajas). Los huevos eclosionarán al cabo de 11-16 meses (uno de los tiempos de incubación más largos de todos los reptiles), de los que saldrán pequeños tuataras que evitarán a los adultos caníbales siendo principalmente diurnos.

Vídeo único del nacimiento de un tuatara en la Victoria University de Wellington. La marca translúcida de la cabeza del pequeño tuatara corresponde al ojo parietal.

Como ya hemos visto por su largo período de incubación, los tuataras se desarrollan lentamente. Estos reptiles no llegarán a la madurez sexual hasta pasados los 12 años, aunque siguen creciendo a partir de entonces. Además, los tuataras son animales muy longevos, llegando a vivir hasta más de 60 años en estado salvaje. En cautividad pueden llegar a superar los 100 años de edad.

CONSERVACIÓN Y AMENAZAS

Antes de la llegada del hombre, los tuataras estaban presentes en las dos islas principales de Nueva Zelanda y en muchos más islotes. Cuando los colonos europeos llegaron, los tuataras ya sólo se encontraban en unas 32 pequeñas islas. Se cree que la desaparición de los tuataras de las islas principales se debe principalmente a la destrucción del hábitat y a la introducción de mamíferos foráneos como las ratas. Otras amenazas son la baja diversidad genética por el aislamiento de las distintas poblaciones y el cambio climático, que puede afectar al sexo de la descendencia.

north_island_map_tuatara-min
Mapa de la distribución actual de los tuataras. Los cuadrados corresponden a la antigua especie Sphenodon guntheri, ahora considerada una población de S. punctatus.

Cuando el ser humano llegó a las islas, se cree que el 80% de Nueva Zelanda estaba cubierta de bosques. Con la llegada de las primeras tribus polinesias hacia el año 1250, empezó la deforestación de más de la mitad del archipiélago. Siglos después, con la llegada de los europeos, esta deforestación se intensificó aún más, hasta la situación actual, que solo se conserva el 23% del bosque original.

pacific_rat-min
Foto de Cliff de una rata del Pacífico (Rattus exulans), una de las principales amenazas para los tuataras.

La introducción de mamíferos foráneos ha sido uno de los principales factores de declive de los tuataras en la actualidad, en especial la introducción de la rata del Pacífico (Rattus exulans). Este roedor ha afectado a las poblaciones, no solo de tuataras, sino también las de muchas especies de aves endémicas de Nueva Zelanda. En estudios de convivencia entre las ratas y los tuataras, se ha observado que las ratas, además de depredar sobre huevos y juveniles, también compiten con los tuataras adultos por los recursos. Con un ciclo vital tan lento, los tuataras no pueden recuperarse de este impacto.

8321043716_a91acb9691_o-min
Foto de Br3nda de un tuatara reintroducido y marcado.

Aun así, actualmente los tuataras están clasificados como bajo “preocupación menor” en la lista roja de la IUCN. Esto es gracias a los grandes esfuerzos de grupos conservacionistas que han contribuido a la recuperación de esta especie. Una de las principales tareas ha sido la eliminación de la rata del Pacífico de las principales islas donde habitan los tuataras. Para ello, se realizó un esfuerzo titánico en muchas islas en las que se capturaron poblaciones enteras de tuataras para la reproducción en cautividad, mientras se eliminaba a las ratas de dichas islas. Una vez eliminada su principal amenaza, todos los individuos capturados y sus descendientes nacidos en cautividad fueron devueltos a sus hábitats naturales para que pudieran vivir sin este fiero competidor.

Vídeo de Carla Braun-Elwert, sobre el éxito reproductor de una vieja pareja de tuataras.

Actualmente, la población salvaje de tuataras se estima entre los 60.000 y los 100.000 individuos. Se puede decir que este fósil viviente, que estuvo a punto de desaparecer después de millones de años de existencia, recibió una segunda oportunidad para seguir habitando las increíbles islas neozelandesas. Esperemos que en el futuro, podamos seguir disfrutando de la existencia de estos reptiles, únicos supervivientes de un linaje prácticamente extinto por muchos siglos más.

REFERENCIAS

Se han consultado las siguientes fuentes durante la elaboración de esta entrada:

difusio-castella

Anuncis

Tuatara: reintroducció d’un fòssil vivent

A Nova Zelanda existeix un rèptil el llinatge del qual va sorgir a l’època dels dinosaures. Encara que externament s’assembla a un llangardaix, el tuatara (el nom vol dir “esquena espinosa” en llengua maorí) és una animal amb moltes característiques úniques que fan que se’l classifiqui en un ordre propi separat de la resta de rèptils. En aquesta entrada us explicarem les principals característiques d’aquesta relíquia del passat tant interessant com amenaçada.

ORIGEN I EVOLUCIÓ

Els tuatares són rèptils inusuals el llinatge dels quals es remonta a fa 240 milions d’anys, a meitats del període Triàssic. Els tuatares són lepidosaures, tot i que formen un llinatge diferent al dels escamosos, pel que es troben en un ordre propi, els rincocèfals (ordre Rhynchocephalia). Moltes espècies es van diversificar durant el Mesozoic, tot i que pràcticament totes foren reemplaçades pels escamosos. A finals del Mesozoic només quedava una família, els Sphenodontidae.

homoeosaurus-min
Fòssil de Homoeosaurus, un parent extingit dels tuatares. Foto de Haplochromis.

De tots els esfenodòntids que van existir, només els tuatares han sobreviscut fins a l’actualitat. Tradicionalment es considerava que els tuatares incloïen dues espècies: el tuatara comú (Sphenodon punctatus) i el tuatara de la illa Brothers (Sphenodon guntheri), encara que anàlisis recents han popularitzat la idea de que el tuatara és una única espècie, S. punctatus.

ANATOMIA DEL TUATARA

Com ja hem comentat, els tuatares s’assemblen externament a un llangardaix, tenint certa semblança amb les iguanes. Els mascles de tuatara són més grans que les femelles, arribant als 61 cm de longitud i el quilo de pes, mentres que aquestes només arriben als 45 cm i el mig quilo. Els tuatares presenten una filera d’espines al dors que els confereix el seu nom comú. Aquestes és més gran en els mascles, i es pot eriçar per a exhibir-se.

30-ish_male_tuatara-min
Foto feta per KeresH d’un mascle jove de tuatara.

El que realment distingeix als tuatares és la seva anatomia interna. La resta de rèptils han modificat molt l’estructura del seu crani, però els tuatares han conservat la estructura diàpsida original sense molts canvis. Mentres que cocodrils i tortugues han desenvolupat cranis massissos, els tuatares conserven àmplies obertures temporals, i encara que els escamosos han desenvolupat cranis i mandíbules molt flexibles, els tuatares mantenen un crani rígid. A més, a diferència de la majoria de rèptils, els tuatares no presenten oïdes externes.

tuatara_skull-2-min
Imatge modificada del dibuix de Nobu Tamura sobre el crani del tuatara. En aquest hi veiem les principals característiques que el distingeixen: 1. Premaxil·lar en forma de bec, 2. Dents acrodonts fusionats a les mandíbules, 3. Àmplies obertures temporals típicament diàpsides i 4. Obertura parietal o pineal.

El nom Rhynchocephalia vol dir “cap de bec” i fa referència a l’estructura de bec del premaxil·lar. Els tuatares també són dels pocs rèptils amb dents acrodonts, els quals es troben fusionats al maxilar i la mandíbula y no es renoven. A més, presenten un moviment mandibular únic tipus serra, movent la mandíbula endavant i enrera.

Vídeo de YouOriginal, d'uns tuatares en captivitat alimentant-se. En aquest vídeo podem apreciar el moviment singular de la mandíbula.

Finalment, una de les característiques anatòmiques més increïbles dels tuatares és que aquests conserven el ull parietal o pineal. Aquesta, és una estructura reminiscent dels primers tetràpodes, conectada amb la glàndula pineal i que està involucrada en la regulació de la temperatura i els ritmes circadians. Encara que alguns altres animals també el conserven, els tuatares presenten un autèntic tercer ull, amb una retina i cristal·lí complets, encara que aquest es va cobrint d’escates amb l’edat.

HÀBITAT I BIOLOGIA

Els tuatares viuen en uns trenta illots a l’estret de Cook, entre les dues illes principals de Nova Zelanda. A més, l’antiga espècie S. guntheri es troba a l’illa de Brothers, a la part nord-oriental de illa Sur. Totes les poblacions viuen en zones boscoses o de matollar costaneres, amb terres tous on poden excavar. A més, a gran part de la seva àrea de distribució existeixen colònies d’aus marines, els nius de les quals són aprofitats pels tuatares.

nz_southern_island_forest-min
Foto de Satoru Kikuchi d’un típic bosc neozelandès.

Comparats amb la majoria de rèptils, els tuatares viuen en hàbitats relativament freds, amb temperatures anuals que oscil·len entre els 5 i els 28°C. Els tuatares són principalment nocturns, sortint dels seus caus normalment de nit, tot i que a vegades se’ls pot trobar prenent el sol a ple dia (especialment a l’hivern).

Els tuatares tenen pocs depredadors naturals. A part d’alguns animals introduïts, només les gavines i algunes aus de presa presenten un perill per aquests rèptils. La seva dieta, en canvi, és bastant variada. Sent depredadors que esperen a que les seves preses passin per davant seu, els tuatares s’alimenten principalment d’invertebrats com escarabats, grills i aranyes, tot i que poden arribar a depredar petits llangardaixos, ous i pollets d’aus, i fins i tot tuatares més petits. Com que les seves dents acrodontes no es renoven, aquestes es van desgastant al cap del temps, pel qual els exemplars més vells solen alimentar-se de preses més toves com cargols i cucs.

Els tuatares es reprodueixen entre gener i març (estiu), moment en el que els territorials mascles competeixen per les femelles, les quals pondràn uns 18-19 ous entre l’octubre i el desembre (primavera). El sexe de les cries dependrà de la temperatura d’incubació (mascles a temperatures més altes, femelles a més baixes). Els ous eclosionaran al cap de 11-16 mesos (un dels temps d’incubació més llargs de tots els rèptils), dels quals sortiran petits tuatares que evitaran als adults caníbals sent principalment diürns.

Vídeo únic del naixement d’un tuatara a la Victoria University de Wellington. La marca translúcida del cap del petit tuatara correspòn a l'ull parietal.

Com ja hem vist pel seu llarg període d’incubació, els tuatares es desenvolupen lentament. Aquests rèptils no arribaran a la maduresa sexual fins passats els 12 anys, tot i que segueixen creixent a partir de llavors. A més, els tuatares són animals molt longeus, arribant a viure més de 60 anys en estat salvatge. En captivitat poden arribar a superar els 100 anys d’edat.

CONSERVACIÓ I AMENACES

Abans de l’arribada de l’home, els tuatares estaven presents a les dues illes principals de Nova Zelanda i en molts més illots. Quan els colons europeus van arribar, els tuatares ja només es trobaven a unes 32 petites illes. Es creu que la desaparició dels tuatares de les illes principals es deu principalment a la destrucció de l’hàbitat i a la introducció de mamífers foranis com les rates. Altres amenaces són la baixa diversitat genètica per l’aïllament de les diferents poblacions i el canvi climàtic, que pot afectar al sexe de la descendència.

north_island_map_tuatara-min
Mapa de la distribució actual dels tuatares. Els quadrats corresponen a l’antiga espècie Sphenodon guntheri, ara considerada una població de S. punctatus.

Quan l’ésser humà arribà a les illes, es creu que el 80% de Nova Zelanda estava coberta de boscos. Amb l’arribada de les primeres tribus polinèsies cap a l’any 1250, començà la deforestació de més de la meitat de l’arxipèlag. Segle després, amb l’arribada dels europeus, aquesta deforestació s’intensificà encara més, fins a la situació actual, que només es conserva el 23% del bosc original.

pacific_rat-min
Foto de Cliff d’una rata del Pacífic (Rattus exulans), una de les principals amenaces pels tuatares.

La introducció de mamífers foranis ha sigut un dels principals factors de declivi dels tuatares a l’actualitat, en especial la introducció de la rata del Pacífic (Rattus exulans). Aquest rosegador ha afectat a les poblacions, no només de tuatares, sinó també les de moltes espècies d’aus endèmiques de Nova Zelanda. En estudis de convivència entre les rates i els tuatares, s’ha observat que les rates, a més de depredar els ous i juvenils, també competeixen amb els tuatares adults pels recursos. Amb un cicle vital tant lent, els tuatares no poden recuperar-se d’aquest impacte.

8321043716_a91acb9691_o-min
Foto de Br3nda d’un tuatara reintroduït i marcat.

Tot i així, actualment els tuatares estàn classificat com sota “preocupació menor” a la llista roja de la IUCN. Això és gràcies als grans esforços de grups conservacionistes que han contribuït a la recuperació d’aquesta espècie. Una de les principals tasques ha estat la eliminació de la rata del Pacífic de les principals illes on habiten els tuatares. Per a això, es realitzà un esforç titànic en moltes illes en les que es van capturar poblacions senceres de tuatares per a la reproducció en captivitat, mentres s’eliminava a les rates d’aquests illots. Un cop eliminada la seva principal amenaça, tots els individus capturats i els seus descendents nascuts en captivitat van ser tornats als seus hàbitats naturals per a que poguéssin viure sense aquest ferotge competidor.

Vídeo de Carla Braun-Elwert, sobre l'èxit reproductor d’una vella parella de tuatares.

Actualment, la població salvatge de tuatares s’estima entre els 60.000 i els 100.000 individus. Es pot dir que aquest fòssil vivent, que va estar a punt de desaparèixer després de milions d’anys d’existència, va rebre una segona oportunitat per a seguir habitant les increïbles illes neozelandeses. Esperem que en el futur, poguem seguir disfrutant de l’existència d’aquest rèptils, únics supervivents d’un llinatge pràcticament extingit, per molts segles més.

REFERÈNCIES

S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:

difusio-catala

Rèptils del desert

Els deserts són uns dels hàbitats més extrems del planeta. El del Sàhara, el del Gobi i el de Sonora són exemples d’alguns dels deserts càlids on les altes temperatures i la falta d’aigua suposen un gran repte pels animals que hi viuen. Els rèptils són un dels grups d’animals que presenten les adaptacions més increïbles per a la vida al desert. En aquesta entrada us explicarem els problemes als que s’enfronten els rèptils que hi viuen, i us presentarem diferents espècies de serps i llangardaixos que han trobat en el desert la seva llar.

ELS RÈPTILS AL DESERT

La característica que uneix a tots els deserts és l’escassa precipitació ja que, contràriament al que molta gent pensa, no tots els deserts presenten temperatures altes (existeixen també els deserts freds, com el desert Àrtic i l’Antàrtic, ambdós en perill pel canvi climàtic). Els rèptils són més abundants en els deserts càlids que en els freds, ja que les baixes temperatures els impedirien dur a terme la seva activitat vital.

aavikko
Mapa per Vzb83 dels deserts càlids, àrids i semiàrids, del món.

Els deserts càlids no sempre tenen temperatures extremadament altes. Mentre que durant el dia les temperatures poden arribar a sobrepassar els 45°C, quan es pon el sol les temperatures poden descendir fins a sota del punt de congelació, creant oscil·lacions diàries de fins a 22°C. Els diferents rèptils del desert, al ser poiquiloterms i ectoterms, utilitzen diferents estratègies comportamentals per tal d’evitar el sobreescalfament durant el dia i conservar la temperatura durant la nit (per exemple, enfilant-se a zones elevades o dormint en caus).

El camaleó de Namaqua (Chamaleo namaquensis) regula la seva temperatura corporal canviant de color. A les primeres hores de sol és de color negre per absorbir el màxim de radiació i activar el seu metabolisme. Quan les temperatures augmenten massa, es torna de color blanc per a reflectir la radiació solar. Vídeo de la BBC.

Com ja hem dit, la principal característica de qualsevol desert és la manca d’aigua. En general, en un desert cauen menys de 250 mm d’aigua a l’any. La pell escamosa i impermeable dels rèptils evita la pèrdua d’aigua i els seus excrements contenen àcid úric que, comparat amb la urea, és molt menys soluble en l’aigua, fent que retinguin més líquids. La majoria de rèptils dels deserts extrauen l’aigua que necessiten de l’aliment i alguns beuen l’aigua de la rosada.

Tant les temperatures extremes com les poques precipitacions fan que en els deserts generalment hi hagi poca vida. La vegetació és escassa i els animals solen ser petits i discrets. Aquesta manca de recursos fa que els rèptils del desert siguin més aviat petits comparats amb els seus parents d’ambient més benèvols. A més aquests sauris solen ser animals que aprofiten qualsevol aliment disponible, tot i que s’ho pensen molt bé a l’hora de gastar la seva valuosa energia per aconseguir el seu següent àpat.

SERPS DE LA SORRA

En molts deserts sorrencs hi trobem vàries espècies de serps (i de llangardaixos àpodes) que s’han adaptat a la vida entre les dunes. Molts d’aquests ofidis comparteixen un mètode de desplaçament anomenat “a cops laterals” (en anglès “sidewinding”), en el qual aixequen el cap i coll de terra i els mouen lateralment, mentre que la resta del cos es queda a terra. Quan tornen a posar el cap a terra, el cos s’aixeca fent que les serps es desplacin lateralment en un angle de 45°. Aquest mètode de locomoció fa que les serps dels deserts es desplacin de forma molt eficaç en un terreny inestable. A més, també minimitza el contacte amb un substrat extremament calent, ja que el cos d’aquests ofidis només toca el terra en dos punts en tot moment.

Com veiem en aquest vídeo de RoyalPanthera, el “sidewinding” permet a les serps del desert desplaçar-se minimitzant el contacte amb el terra calent.

Molts ofidis del desert s’enterren a la sorra tant per a evitar la insolació com per a camuflar-se i sorpendre a les seves preses. Això ha fet que moltes serps desertícoles siguin sensibles a les vibracions generades per les seves preses al moure’s per la sorra. A més algunes espècies presenten l’escama rostral (l’escama de la punta del musell) més engruixida i desenvolupada per a ajudar-les a excavar en terrenys sorrencs.

heterodon_nasicus2
Un exemple d’això són les serps nord americanes del gènere Heterodon, conegudes també com a serps musell de porc, ja que presenten l’escama rostral elevada donant-li al seu musell una forma característica. Foto de Heterodon nasicus per Dawson.

Els escurçons banyuts del gènere Cerastes també presenten vàries característiques que els faciliten la vida als deserts. Aquests escurçons eviten les altes temperatures sent actius durant la nit i passen el dia enterrats a la sorra. El seu mètode de caça consisteix en enterrar-se esperant a que passi una presa, estalviant així el màxim d’energia. Les seves escames supraoculars en forma de banya es creu que els serveixen per a evitar que la sorra cobreixi els seus ulls quan estàn enterrats.

10680524213_5584c4ddb8_o
Foto de Tambako The Jaguar d’un escurçó banyut del Sàhara (Cerastes vipera), espècie del nord d’Àfrica i la Península del Sinaí.

CRIATURES ESPINOSES

En diferents deserts del món hi trobem rèptils que tenen el cos recobert d’espines. Això, no només els proporciona certa protección contra els depredadors, sinó que a més els camufla en un ambient on abunden les plantes espinoses. Dos d’aquests animals són membres del subordre Iguania: el diable espinós i els llangardaixos cornuts.

thorny_-_christopher_watson
Foto d’un diable espinós (Moloch horridus) per Christopher Watson.

El diable espinós (Moloch horridus) és un agàmid que viu en deserts sorrencs d’Austràlia. Aquest llangardaix presenta espines per tot el cos que el fan difícil d’empassar per als seus depredadors. També presenta una protuberància darrera del cap que actua com a magatzem de greix. Quan es sent amenaçat, amaga el seu cap autèntic entre les potes i mostra la protuberància del coll com un cap fals. Probablement l’adaptació més interessant d’aquest animal és el sistema de petits canals que presenta entre les escames, els quals recullen tota aigua que entra en contacte amb la pell i la condueixen directament a la boca.

Els llangardaixos cornuts (gènere Phrynosoma, coneguts també com a “gripaus banyuts”) són iguànids que es troben en diferents hàbitats àrids d’Amèrica del Nord. De forma similar al diable espinós, els seus cossos recoberts d’espines els fan difícils d’empassar pels depredadors. A més, al ser atrapats inflen el seu cos per dificultar’ls-hi encara més la tasca. Finalment, algunes espècies com el llangardaix cornut de Texas (Phrynosoma cornutum) són coneguts per la seva capacitat d’autohemorragia: quan es veuen acorralats poden ejectar un raig de sang pudent de l’ull que espanta  a la majoria de depredadors.

federal_horned_toad_pic_crop
Foto del U.S. Fish & Wildlife Service d’un llangardaix cornut de Texas (Phrynosoma cornutum).

Com podeu veure, en els deserts hi podem trobar rèptils amb algunes de les adaptacions més enginyoses (i fastigoses) del món. Aquests només són uns pocs exemples de la increïble diversitat de sauris que trobem pels deserts del món, els quals només procuren sobreviure a les dures condicions d’aquests ambients tant extrems. A vegades però, només cal evitar cremar-se els peus amb la sorra.

Vídeo de BBCWorldwide d’un llangardaix musell de pala (Zeros anchietae) fent la “dansa termal” per disminuir el contacte amb la sorra calenta.

REFERÈNCIES

S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:

difusio-catala

Reptiles del desierto

Los desiertos son unos de los hábitats más extremos del planeta. El del Sahara, el del Gobi y el de Sonora son ejemplos de algunos de los desiertos cálidos donde las altas temperaturas y la falta de agua suponen un gran reto para los animales que allí viven. Los reptiles son uno de los grupos de animales que presentan las adaptaciones más increíbles para la vida en el desierto. En esta entrada os explicaremos los problemas a los que se enfrentan los reptiles que allí viven, y os presentaremos diferentes especies de serpientes y lagartos que han encontrado su hogar en el desierto.

LOS REPTILES EN EL DESIERTO

La característica que une a todos los desiertos es la escasa precipitación ya que, contrariamente a lo que mucha gente piensa, no todos los desiertos presentan temperaturas altas (existen también los desiertos fríos, como el desierto Ártico y el Antártico, ambos en peligro por el cambio climático). Los reptiles son más abundantes en los desiertos cálidos que en los fríos, ya que las bajas temperaturas les impedirían llevar a cabo su actividad vital.

aavikko
Mapa por Vzb83 de los desiertos cálidos, áridos y semiáridos, del mundo.

Los desiertos cálidos no siempre tienen temperaturas extremadamente altas. Mientras que durante el día las temperaturas pueden llegar a sobrepasar los 45°C, cuando se pone el  sol las temperaturas pueden llegar a descender hasta debajo del punto de congelación, creando oscilaciones diarias de hasta 22°C. Los diferentes reptiles del desierto, al ser poiquilotermos y ectotermos, utilizan diferentes estrategias comportamentales con tal de evitar el sobrecalentamiento durante el día y conservar la temperatura durante la noche (por ejemplo, subiéndose a zonas elevadas o durmiendo en madrigueras).

El camaleón de Namaqua (Chamaleo namaquensis) regula su temperatura corporal cambiando de color. A las primeras horas de sol es de color negro para absorber el máximo de radiación y activar su metabolismo. Cuando las temperaturas aumentan demasiado, se vuelve de color blanco para reflejar la radiación solar. Vídeo de la BBC.

Como ya hemos dicho, la principal característica de cualquier desierto es la falta de agua. En general, en un desierto caen menos de 250 mm de agua al año. La piel escamosa e impermeable de los reptiles evita la pérdida de agua y sus excrementos contienen ácido úrico que, comparado con la urea, es mucho menos soluble en el agua, haciendo que retengan más líquidos. La mayoría de reptiles de los desiertos extraen el agua que necesitan del alimento y algunos beben agua del rocío.

Tanto las temperaturas extremas como las pocas precipitaciones hacen que en los desiertos generalmente haya poca vida. La vegetación es escasa y los animales suelen ser pequeños y discretos. Esta falta de recursos hace que los reptiles del desierto sean más bien pequeños comparados con sus parientes de ambientes más benévolos. Además estos saurios suelen ser animales que aprovechan cualquier alimento disponible, aunque se lo piensan dos veces a la hora de gastar su valiosa energía para conseguir su siguiente comida.

SERPIENTES DE LA ARENA

En muchos desiertos arenosos encontramos varias especies de serpientes (y de lagartos ápodos) que se han adaptado a la vida entre las dunas. Muchos de estos ofidios comparten un método de desplazamiento llamado “a golpes laterales” (en inglés “sidewinding”), en el cual levantan la cabeza y cuello del suelo y los mueven lateralmente, mientras el resto del cuerpo se queda en el suelo. Cuando vuelven a poner la cabeza en el suelo, el cuerpo se levanta haciendo que las serpientes se desplacen lateralmente en un ángulo de 45°. Este método de locomoción hace que las serpientes de los desiertos se desplacen de forma muy eficaz en un terreno inestable. Además, también minimiza el contacto con un sustrato extremamente caliente, ya que el cuerpo de estos ofidios solo toca el suelo en dos puntos en todo momento.

Como vemos en este vídeo de RoyalPanthera, el “sidewinding” permite a las serpientes del desierto desplazarse minimizando el contacto con el suelo caliente.

Muchos ofidios del desierto se entierran en la arena tanto para evitar la insolación como para camuflarse y sorprender a sus presas. Esto ha hecho que muchas serpientes desertícolas sean sensibles a las vibraciones generadas por sus presas al moverse por la arena. Además algunas especies presentan la escama rostral (la escama de la punta del hocico) más gruesa y desarrollada para ayudarlas a excavar en terrenos arenosos.

heterodon_nasicus2
Un ejemplo de esto son las serpientes del género Heterodon, conocidas también como serpientes hocico de cerdo, ya que presentan la escama rostral elevada dándole a su hocico una forma característica. Foto de Heterodon nasicus por Dawson.

Las víboras cornudas del género Cerastes también presentan varias características que les facilitan la vida en los desiertos. Estas víboras evitan las altas temperaturas siendo activos durante la noche y pasan el día enterrados en la arena. Su método de caza consiste en enterrarse esperando a que pase una presa, ahorrando así el máximo de energía. Se cree que sus escamas supraoculares en forma de cuerno les sirven para evitar que la arena cubra sus ojos cuando están enterradas.

10680524213_5584c4ddb8_o
Foto de Tambako The Jaguar de una víbora cornuda del Sahara (Cerastes vipera), especie del Norte de África y la Península del Sinaí.

CRIATURAS ESPINOSAS

En diferentes desiertos del mundo encontramos reptiles que tienen el cuerpo recubierto de espinas. Esto, no solo les proporciona cierta protección contra los depredadores, sino que además los camufla en un ambiente donde abundan las plantas espinosas. Dos de estos animales son miembros del suborden Iguania: el diablo espinoso y los lagartos cornudos.

thorny_-_christopher_watson
Foto de un diablo espinoso (Moloch horridus) por Christopher Watson.

El diablo espinoso (Moloch horridus) es un agámido que vive en desiertos arenosos de Australia. Este lagarto presenta espinas por todo el cuerpo que lo hacen difícil de tragar para sus depredadores. También presenta una protuberancia detrás de la cabeza que actúa como almacén de grasa. Cuando se siente amenazado, esconde su cabeza auténtica entre las patas y muestra la protuberancia del cuello como una cabeza falsa. Probablemente la adaptación más interesante de este animal es el sistema de pequeños canales que presenta entre las escamas, los cuales recogen toda agua que entra en contacto con la piel y la conducen directamente a la boca.

Los lagartos cornudos (género Phrynosoma, conocidos también como “sapos cornudos”) son iguánidos que se encuentran en diferentes hábitats áridos de América del Norte. De forma similar al diablo espinoso, sus cuerpos recubiertos de espinas los hacen difíciles de tragar para los depredadores. Además, al ser atrapados hinchan su cuerpo para dificultarles aún más la tarea. Finalmente, algunas especies como el lagarto cornudo de Texas (Phrynosoma cornutum) son conocidos por su capacidad de autohemorragia: cuando se ven acorralados pueden eyectar un chorro de sangre apestosa del ojo que ahuyenta a la mayoría de depredadores.

federal_horned_toad_pic_crop
Foto del U.S. Fish & Wildlife Service de un lagarto cornudo de Texas (Phrynosoma cornutum).

Como podéis ver, en los desiertos podemos encontrar reptiles con algunas de las adaptaciones más ingeniosas (y asquerosas) del mundo. Estos son sólo unos pocos ejemplos de la increíble diversidad de saurios que encontramos por los desiertos del mundo, los cuales sólo procuran sobrevivir a las duras condiciones de estos ambientes tan extremos. Aunque a veces, sólo hace falta evitar quemarse los pies con la arena.

Vídeo de BBCWorldwide de un lagarto hocico de pala (Zeros anchietae) haciendo la “danza termal” para disminuir el contacto con la arena caliente.

REFERENCIAS

Se han consultado las siguientes fuentes durante la elaboración de esta entrada:

difusio-castella

Rèptils i mamífers: mateix origen, diferents històries

Els mamífers van evolucionar dels rèptils? Doncs la veritat és que no. Rèptils i mamífers tenen històries evolutives independents que es van separar poc després de l’aparició de l’anomenat ou amniota, que permetia que les cries d’aquests animals nasquéssin fora de l’aigua. Anteriorment vam parlar sobre l’origen dels vertebrats, i sobre com aquests van sortir del mar per a caminar per terra per primer cop. En aquesta entrada explicarem com els avantpassats de rèptils i mamífers, els AMNIOTES, van independitzar-se del medi aquàtic i van convertir-se en el grup dominant d’animals terrestres.

L’OU AMNIOTA

La característica que uneix a rèptils i mamífers en un sol grup és l’ou amniota. Mentre que els ous dels amfibis són relativament petits i només presenten una capa interna, els ous dels amniotes són força més grans i presenten vàries membranes protegint l’embrió i mantenint-lo en un medi aquós. La capa més externa és la closca de l’ou, que apart d’oferir protección física a l’embrió, evita la pèrdua d’aigua i la seva porositat permet l’intercanvi de gasos. Sota la closca hi trobem les següents membranes:

512px-Crocodile_Egg_Diagram.svgEsquema de l’ou d’un cocodril: 1. closca de l’ou 2. sac vitel·lí 3. vitel (nutrients) 4. vasos sanguinis 5. amni 6. cori 7. aire 8. alantoide 9. albúmina (clara de l’ou) 10. sac amniòtic 11. embrió 12. líquid amniòtic. Imatge de Amelia P.
  • Cori: És la primera membrana interna que trobem, proporciona protecció i, juntament amb l’amni, formen el sac amniòtic. A més, al estar en contacte amb la closca, participa en l’intercanvi de gasos, portant oxígen de l’exterior a l’embrió i diòxid de carboni de l’embrió a l’exterior.
  • Amni: Membrana que envolta l’embrió i forma la part interna del sac amniòtic. Aquesta proporciona un ambient aquós a l’embrió, i el connecta amb el sac vitel·lí (estructura que proporciona aliment i que també es troba en peixos i amfibis).
  • Alantoide: La tercera capa, serveix com a magatzem de residus nitrogenats, i juntament amb el cori ajuda en l’intercanvi de gasos.
512px-Amphibian_Egg_Diagram.svgEsquema de l’ou d’un amfibi: 1. càpsula gelatinosa 2. membrana vitel·lina 3. fluid perivitel·lí 4. vitel 5. embrió. Imatge de Separe3g.

Aquest seguit de membranes fan que els amniotes no hagin de tornar a l’aigua per a pondre els ous. A més, a diferència dels amfibis, els amniotes no passen per la fase larvària amb brànquies, sinó que neixen directament com a adults en miniatura, amb pulmons i potes (els que en tenen). Tot això va fer que els primers amniotes s’independitzéssin completament del medi aquàtic.

ORIGEN DELS AMNIOTES

Les primers amniotes van evolucionar fa uns 312 milions d’anys a partir de tetràpodes reptiliomorfs. A finals del Carbonífer van desaparèixer molts dels boscos tropicals on vivien els amfibis primitius, deixant lloc a un clima més fred i àrid. Això va acabar amb molts dels grans amfibis de l’época, deixant espai per a que els amniotes ocupéssin els nous hàbitats.

Solenodonsaurus1DBReconstrucció de Solenodonsaurus janenschi, un dels candidats a ser el primer amniota, que visqué fa 320-305 milions d’anys a l’actual República Txeca. Recontrucció de Dmitry Bogdanov.

CARACTERÍSTIQUES

Aquests primers amniotes presentaven un seguit  de característiques que els diferenciaven dels seus avantpassats semiaquàtics:

  • Urpes còrnies (els amfibis no tenen urpes) i pell queratinitzada que redueix la pèrdua d’aigua.
  • Intestí gruixut més gran i major densitat de túbuls renals, per augmentar la reabsorció d’aigua.
  • Glàndules llacrimals especialitzades i una tercera membrana a l’ull (membrana nictitant) que mantenen la humitat ocular.
  • Pulmons més grans.
  • Pèrdua de la línia lateral (òrgan sensorial present en peixos i amfibis).

L’esquelet i la musculatura també van evolucionar oferint una major movilitat i agilitat en un hàbitat terrestre. Els primers amniotes presentaven les costelles tancades per davant mitjançant l’esternó, fent que els seus òrgans interns estiguéssin més ben subjectats, i un seguit de receptors musculars els conferien una major agilitat i coordinació durant la locomoció.

CRANIS AMNIOTES

Tradicionalment, es classificaven els diferents amniotes en base a l’estructura del seu crani. La característica que es mirava era la presència de obertures temporals (fenestres), segons les quals teníem tres grups:

  • Anàpsids (“sense arcs”): No presenten cap obertura temporal (tortugues).
Skull_anapsida_1Esquema d’un crani anàpsid, de Preto(m).
  • Sinàpsids (“arcs fusionats”): Presenten una sola obertura temporal inferior (mamífers).
Skull_synapsida_1Esquema d’un crani sinàpsid, de Preto(m).
  • Diàpsids (“dos arcs”): Presenten dues obertures temporals (rèptils, incloent les aus).
Skull_diapsida_1Esquema d’un crani diàpsid, de Preto(m).

Abans es creia que els primers amniotes presentaven un crani anàpsid (sense obertures, com les tortugues) i que posteriorment es van separar els sinàpsids i els diàpsids (les obertures temporals formaven uns “arcs” que proporcionaren nous punts d’anclatge per la musculatura mandibular). Tanmateix, s’ha vist que aquesta classificació en tres grups no és vàlida.

Tot i que encara es creu que els primers amniotes eren anàpsids, actualment es pensa que aquests, molt poc després de la seva aparició, es van separar en dos llinatges diferents: els sinàpsids (clade Synapsida) i els sauròpsids (clade Sauropsida).

SYNAPSIDA

Aquest llinatge inclou als mamífers i als seus avantpassats amniotes. Tot i que els primers sinàpsids com Archaeothyris externament s’assemblessin a una sargantana, estaven més emparentats amb els mamífers i compartien amb aquests l’obertura temporal única per on passaven els músculs mandibulars.

Archaeothyris.svgDibuix del crani de Archaeothyris, el que es creu que va ser un dels primers sinàpsids que visqué fa uns 306 milions d’anys a Nova Escòcia. Dibuix de Gretarsson.

Als avantpassats dels mamífers abans se’ls coneixia com a “rèptils mamiferoides”, ja que es creia que els mamífers havien evolucionat de rèptils primitius. Actualment és acceptat que els sinàpsids formen un llinatge independent dels rèptils, i que comparteixen un seguit de tendències evolutives que porten fins als mamífers moderns: l’aparició de diferents tipus de dents, la mandíbula formada per un únic os, la posició més vertical de les potes respecte el cos, etc…

Dimetrodon_grandisReconstrucció de Dimetrodon grandis, un dels sinàpsids més coneguts, de fa uns 280 milions d’anys. Reconstrucció de Dmitry Bogdanov.

Tot i que la majoria de mamífers actuals no pon ous i pareix a les cries vives, tots els grups durant el desenvolupament embrionari mantenen les tres membranes característiques dels amniotes (amni, cori i alantoide).

SAUROPSIDA

Els sauròpsids inclouen als rèptils actuals i als seus avantpassats i parents amniotes. Actualment en molts treballs científics s’utilitza la paraula “sauròpsid” en lloc de “rèptil” quan es discuteix de filogènia, ja que dins de sauròpsid s’inclou també a les aus. Els primers sauròpsids probablement eren anàpsids, i poc després de la seva aparició es van separar en dos grups: els Parareptilia que conservaven el crani anàpsid, i els Eureptilia que inclouen als diàpsids (els rèptils i aus actuals).

Traditional_ReptiliaArbre evolutiu dels vertebrats actuals, on es marca de color verd als grups antigament considerats rèptils. Com es veu, la concepció tradicional de “rèptil” inclou als avantpassats dels mamífers i exclou a les aus. Imatge de Petter Bøckman.

Els diàpsids actualment són el grup de vertebrats terrestres més diversificat. Aquests es van multiplicar en moltíssimes espècies a finals del Pèrmic (fa uns 254 milions d’anys), just abans del Mesozoic (l’Era dels Rèptils). Aquests es poden dividir en dos grans grups: els Lepidosaures i els Arcosaures, ambdós amb representants actuals.

LEPIDOSAURIA: PETITS I NOMBROSOS

Els lepidosaures (literalment “rèptils amb escates”) van aparèixer a principis del Triàssic (fa uns 247 milions d’anys) i, tot i que la majoria no van assolir grans mides, actualment són el grup de rèptils no aviaris més nombrós. Aquests es caracteritzen per presentar una escletxa cloacal transversal, per presentar escates sobreposades i mudar la pell sencera o a trossos i per altres caràcters esquelètics.

Rat_Snake_moulted_skinMuda sencera de la pell d’una serp rata. Foto de Mylittlefinger.

Els lepidosaures actuals pertanyen a dos ordres diferents:

  • Ordre Rhynchocephalia: Inclouen a les dues espècies de tuatares actuals. Es consideren fòssils vivents perquè presenten cranis i característiques semblants a les dels diàpsids mesozoics i actualmente es troben en greu perill d’extinció.
Sphenodon_punctatus_(5)Foto d’una tuatara (Sphenodon punctatus), de Tim Vickers.
  • Ordre Squamata: Els escamosos actuals inclouen iguanes, camaleons, dragons, sargantanes, serps i altres llangardaixos sense potes. Amb més de 9000 espècies actuales els escamosos són un grup molt nombrós, amb un gran ventall d’adaptacions i estratègies de supervivencia.
Sin títuloFotos d’alguns escamosos d’esquerra a dreta i de dalt a baix: Iguana verda (Iguana iguana, de Cary Bass), cobra reial (Ophiophaga Hannah, de Michael Allen Smith), llangardaix cuc de dues potes (Bipes biporus, de Marlin Harms) i camaleó de l’Índia (Chamaeleo zeylanicus, de Shantanu Kuveskar).

ARCHOSAURIA: ANTICS REIS

Els arcosaures (literalment “rèptils dominants”) van ser el grup d’animals terrestres dominants durant el Mesozoic. Aquests van conquistar tots els habitats possibles fins a l’extinció de la majoria de grups a finals del Cretàcic. Alguns dels grups que es van extingir són els pseudosuquis (parents dels cocodrils actuals, ordre Crocodylia), els pterosaures (grans rèptils voladors) i els dinosaures (excepte els ocells actuals, clade Aves).

Massospondylus_Skull_Steveoc_86Dibuix del crani del dinosaure Massospondylus en el que es veuen les diferents obertures que caracteritzen als arcosaures diàpsids. Imatge de Steveoc 86.

Com podeu veure, els dos grups d’arcosaures actuals no podrien ser més diferents. Tanmateix, els cocodrils i les aus comparteixen un avantpassat comú, i estan més emparentats entre ells que amb la resta de rèptils.

Yellow-billed_stork_kazingaFoto de dues espècies d’arcosaures actuals; un cocodril del Nil (Crocodylus niloticus) i un tàntal africà (Mycteria ibis). Foto de Tom Tarrant.

I LES TORTUGUES?

Les tortugues (ordre Testudines) sempre han estat un grup difícil de classificar. Les tortugues són els únics amniotes actuals que presenten un crani anàpsid, sense cap obertura post-ocular. Per això antigament, se les havia classificat com a descendents d’amniotes primitius (clade Anapsida, actualment en desús) o com a sauròpsids anàpsids primitius (dins del clade Parareptilia).

KONICA MINOLTA DIGITAL CAMERAEsquelet de la tortuga extingida Meiolania platyceps que visqué a Nova Caledònia fins fa 3000 anys. En aquesta foto s’aprecia el crani compacte i sense obertures temporals. Foto de Fanny Schertzer.

Estudis moleculars recents, han desvelat que les tortugues són realment diàpsids que van perdre les obertures temporals secundàriament. El que encara divideix a la comunitat científica és si els testudinis están més emparentats amb els Lepidosauromorfs (lepidosaures i els seus avantpassats) o amb els Arcosauromorfs (arcosaures i els seus avantpassats).

Leopard_tortoiseExemplar de tortuga lleopard (Stigmochelys pardalis) de Tanzània. Foto de Charles J. Sharp.

Com heu pogut veure, l’evolució dels amniotes és un tema molt complex. Esperem que amb aquesta entrada hagi quedat clar que:

  1. Els mamífers (sinàpsids) provenen d’un llinatge evolutiu diferent al dels rèptils (sauròpsids).
  2. Els sauròpsids inclouen als “rèptils” tradicionals (lepidosaures, arcosaures i tortugues) i a les aus (dins dels arcosaures).
  3. Encara queda molt per investigar sobre la posición de les tortugues (testudinis) dins l’arbre evolutiu dels sauròpsids.
Figure_29_04_03Esquema modificat sobre les relacions evolutives entre els diferents grups d’amniotes.

REFERÈNCIES

Per a l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Difusió-català

Reptiles y mamíferos: mismo origen, diferentes historias

¿Los mamíferos evolucionaron de los reptiles? Pues la verdad es que no. Reptiles y mamíferos tienen historias evolutivas independientes que se separaron poco después de la aparición de lo que se conoce como huevo amniota, que permitía que las crías de estos animales nacieran fuera del agua. Anteriormente hablamos sobre el origen de los vertebrados y sobre cómo éstos salieron del mar para caminar por tierra por primera vez. En esta entrada explicaremos cómo los antepasados de reptiles y mamíferos, los AMNIOTAS, se independizaron del medio acuático y se convirtieron en el grupo dominante de animales terrestres.

EL HUEVO AMNIOTA

La característica que une a reptiles y mamíferos en un solo grupo es el huevo amniota. Mientras que los huevos de los anfibios son relativamente pequeños y solo presentan una capa interna, los huevos de los amniotas son bastante más grandes y presentan varias membranas protegiendo al embrión y manteniéndolo en un medio acuoso. La capa más externa es la cáscara del huevo, que aparte de ofrecer protección física al embrión, evita la pérdida de agua y su porosidad permite el intercambio de gases.  Debajo de la cáscara encontramos las siguientes membranas:

512px-Crocodile_Egg_Diagram.svgEsquema del huevo de un cocodrilo: 1. cáscara del huevo 2. saco vitelino 3. vitelo (nutrientes) 4. vasos sanguíneos 5. amnios 6. corion 7. aire 8. alantoides 9. albúmina (clara del huevo) 10. saco amniótico 11. embrión 12. líquido amniótico. Imagen de Amelia P.
  • Corion: Es la primera membrana interna que encontramos, proporciona protección y, junto con el amnios, forman el saco amniótico. Además, al estar en contacto con la cáscara, participa en el intercambio de gases, llevando oxígeno del exterior al embrión y dióxido de carbono del embrión al exterior.
  • Amnios: Membrana que envuelve al embrión y forma parte del saco amniótico. Ésta proporciona un ambiente acuoso al embrión y lo conecta con el saco vitelino (estructura que proporciona alimento y que también encontramos en peces y anfibios).
  • Alantoides: La tercera capa, sirve como almacén de residuos nitrogenados y, junto con el corion, ayuda en el intercambio de gases.
512px-Amphibian_Egg_Diagram.svgEsquema del huevo de un anfibio: 1. cápsula gelatinosa 2. membrana vitelina 3. fluido perivitelino 4. vitelo 5. embrión. Imagen de Separe3g.

Este conjunto de membranas hace que los amniotas no tengan que volver al agua para poner los huevos. Además, a diferencia de los anfibios, los amniotas no pasan por la fase larvaria con branquias, sino que nacen directamente como adultos en miniatura, con pulmones y patas (los que tienen). Todo esto hizo que los primeros amniotas se independizaran completamente del medio acuático.

ORÍGEN DE LOS AMNIOTAS

Los primeros amniotas evolucionaron hace unos 312 millones de años a partir de tetrápodos reptiliomorfos. A finales del Carbonífero desaparecieron muchos de los bosques tropicales donde vivían los anfibios primitivos, dando lugar a un clima más frío y árido. Esto acabó con muchos de los grandes anfibios del momento, dejando espacio para que los amniotas ocupasen los nuevos hábitats.

Solenodonsaurus1DBReconstrucción de Solenodonsaurus janenschi, uno de los candidatos a ser el primer amniota, que vivió hace 320-305 millones de años en la actual República Checa. Recontrucción de Dmitry Bogdanov.

CARACTERÍSTICAS

Estos primeros amniotas presentaban un seguido de características que los diferenciaban de sus antepasados semiacuáticos:

  • Garras córneas (los anfibios no tienen garras) i piel queratinizada que reduce la pérdida de agua .
  • Intestino grueso más grande y mayor densidad de túbulos renales para aumentar la reabsorción de agua.
  • Glándulas lacrimales especializadas y una tercera membrana en el ojo (membrana nictitante) que mantienen la humedad ocular.
  • Pulmones más grandes.
  • Pérdida de la línea lateral (órgano sensorial presente en peces y anfibios).

El esqueleto y la musculatura también evolucionaron ofreciendo una mayor movilidad y agilidad en un hábitat terrestre. Los primeros amniotas presentaban las costillas cerradas por delante mediante el esternón, haciendo que sus órganos internos estuviesen mejor sujetos, y un conjunto de receptores musculares que les conferían una mayor agilidad y coordinación durante la locomoción.

CRÁNEOS AMNIOTAS

Tradicionalmente, se clasificaban a los diferentes amniotas en base a la estructura de su cráneo. La característica que se miraba era la presencia de aperturas temporales (fenestras), según las cuáles teníamos tres grupos:

  • Anápsidos (“sin arcos”): No presentan ninguna apertura temporal (tortugas).
Skull_anapsida_1Esquema de un cráneo anápsido, de Preto(m).
  • Sinápsidos (“arcos fusionados”): Presentan una sola apertura temporal inferior (mamíferos).
Skull_synapsida_1Esquema de un cráneo sinápsido, de Preto(m).
  • Diápsidos (“dos arcos”): Presentan dos aperturas temporales (reptiles, incluyendo las aves).
Skull_diapsida_1Esquema de un cráneo diápsido, de Preto(m).

Antes se creía que los primeros amniotas presentaban un cráneo anápsido (sin oberturas, como las tortugas) y que posteriormente se separaron en sinápsidos y diápsidos (las aperturas temporales formaban unos “arcos” que proporcionaron nuevos puntos de anclaje para la musculatura mandibular). Aun así, se ha visto que esta clasificación en tres grupos no es válida.

Aunque aún se cree que los primeros amniotas eran anápsidos, actualmente se piensa que éstos, muy poco después de su aparición, se separaron en dos linajes diferentes: los sinápsidos (clado Synapsida) y los saurópsidos (clado Sauropsida).

SYNAPSIDA

Este linaje incluye a los mamíferos y a sus antepasados amniotas. Aunque los primeros sinápsidos como Archaeothyris externamente se parecieran a una lagartija, estaban más emparentados con los mamíferos y compartían con éstos la apertura temporal única por donde pasaban los músculos mandibulares.

Archaeothyris.svgDibujo del cráneo de Archaeothyris, el que se cree que fue uno de los primeros sinápsidos que vivió hace unos 306 millones de años en Nueva Escocia. Dibujo de Gretarsson.

Antes, los antepasados de los mamíferos eran conocidos como “reptiles mamiferoides”, ya que se creía que los mamíferos habían evolucionado de reptiles primitivos. Actualmente está aceptado que los sinápsidos forman un linaje independiente de los reptiles, y que comparten un seguido de tendencias evolutivas que llevan hasta los mamíferos modernos: la aparición de diferentes tipos de dientes, la mandíbula formada por un único hueso, la posición más vertical de las patas respecto el cuerpo, etc…

Dimetrodon_grandisReconstrucción de Dimetrodon grandis, uno de los sinápsidos más conocidos, de hace unos 280 millones de años. Reconstrucción de Dmitry Bogdanov.

Aunque la mayoría de mamíferos actuales no pone huevos y pare crías vivas, todos los grupos durante el desarrollo embrionario mantienen las tres membranas características de los amniotas (amnios, corion y alantoides).

SAUROPSIDA

Los saurópsidos incluyen a los reptiles actuales y a sus antepasados y parientes amniotas. Actualmente en muchos trabajos científicos se utiliza la palabra “saurópsido” en vez de “reptil” cuando se discute de filogenia, ya que dentro de saurópsido se incluye también a las aves. Los primeros saurópsidos probablemente eran anápsidos, y poco después de su aparición se separaron en dos grupos: los Parareptilia que conservaban el cráneo anápsido, y los Eureptilia que incluyen a los diápsidos (los reptiles y aves actuales).

Traditional_ReptiliaÁrbol evolutivo de los vertebrados actuales, en el que se marca en verde a los grupos antiguamente considerados reptiles. Como se ve, la concepción tradicional de "reptil" incluye a los antepasados de los mamíferos y excluye a las aves. Imagen de Petter Bøckman.

Los diápsidos actualmente son el grupo de vertebrados terrestres más diversificado. Éstos se multiplicaron en muchísimas especies a finales del Pérmico (hace unos 254 millones de años), justo antes del Mesozoico (la Era de los Reptiles). Éstos se pueden dividir en dos grandes grupos: los Lepidosaurios y los Arcosaurios, ambos con representantes actuales.

LEPIDOSAURIA: PEQUEÑOS Y NUMEROSOS

Los lepidosaurios (literalmente “reptiles con escamas”) aparecieron a principios del Triásico (hace unos 247 millones de años) y, aunque la mayoría no alcanzó tamaños muy grandes, actualmente son el grupo de reptiles no aviares más numeroso. Éstos se caracterizan por presentar una hendidura cloacal transversa, por presentar escamas superpuestas y mudar la piel entera o a trozos y por otros caracteres esqueléticos.

Rat_Snake_moulted_skinMuda entera de la piel de una serpiente rata. Foto de Mylittlefinger.

Los lepidosaurios actuales pertenecen a dos órdenes diferentes:

  • Orden Rhynchocephalia: Incluyen a las dos especies de tuataras actuales. Se consideran fósiles vivientes porque presentan cráneos y características parecidas a las de los diápsidos mesozoicos. Actualmente se encuentran en grave peligro de extinción.
Sphenodon_punctatus_(5)Foto de un tuatara (Sphenodon punctatus), de Tim Vickers.
  • Orden Squamata: Los escamosos actuales incluyen iguanas, camaleones, salamanquesas, lagartijas, serpientes y otros lagartos sin patas. Con más de 9000 especies actuales los escamosos son un grupo muy numeroso, con un gran abanico de adaptaciones y estrategias de supervivencia.
Sin títuloFotos de algunos escamosos de izquierda a derecha y de arriba a abajo: Iguana verde (Iguana iguana, de Cary Bass), cobra real (Ophiophaga Hannah, de Michael Allen Smith), lagarto gusano de dos patas (Bipes biporus, de Marlin Harms) y camaleón de la Índia (Chamaeleo zeylanicus, de Shantanu Kuveskar).

ARCHOSAURIA: ANTIGUOS REYES

Los arcosaurios (literalmente “reptiles dominantes”) fueron el grupo de animales terrestres dominantes durante el Mesozoico. Éstos conquistaron todos los hábitats posibles hasta la extinción de la mayoría de grupos a finales del Cretácico. Algunos de los grupos que se extinguieron fueron los pseudosuquios (parientes de los cocodrilos actuales, orden Crocodylia), los pterosaurios (grandes reptiles voladores) y los dinosaurios (excepto las aves actuales, clado Aves).

Massospondylus_Skull_Steveoc_86Dibujo del cráneo del dinosaurio Massospondylus en el que se ven las diferentes oberturas que caracterizan a los arcosaurios diápsidos. Imagen de Steveoc 86.

Como podéis ver, los dos grupos de arcosaurios actuales no podrían ser más diferentes. Aun así, los cocodrilos y las aves comparten un antepasado común, y están más emparentados entre ellos que con el resto de reptiles.

Yellow-billed_stork_kazingaFoto de dos especies de arcosaurios actuales; un cocodrilo del Nilo (Crocodylus niloticus) y un tántalo africano (Mycteria ibis). Foto de Tom Tarrant.

¿Y LAS TORTUGAS?

Las tortugas (orden Testudines) siempre han sido un grupo difícil de clasificar. Las tortugas son los únicos amniotas actuales que presentan un cráneo anápsido, sin ninguna apertura post-ocular. Por eso, antiguamente se las había clasificado como descendientes de amniotas primitivos (clado Anapsida, actualmente en desuso) o como saurópsidos anápsidos primitivos (dentro del clado Parareptilia).

KONICA MINOLTA DIGITAL CAMERAEsqueleto de la tortuga extinta Meiolania platyceps que vivió en Nueva Caledonia hasta hace 3000 años. En esta foto se aprecia el cráneo compacto y sin oberturas temporales. Foto de Fanny Schertzer.

Estudios moleculares recientes han desvelado que las tortugas son realmente diápsidos que perdieron las aperturas temporales secundariamente. Lo que aún divide la comunidad científica es si los testudinios están más emparentados con los Lepidosauromorfos (lepidosaurios y sus antepasados) o con los Arcosauromorfos (arcosaurios y sus antepasados).

Leopard_tortoiseEjemplar de tortuga leopardo (Stigmochelys pardalis) de Tanzania. Foto de Charles J. Sharp.

Como habéis podido ver, la evolución de los amniotas es un tema muy complejo. Esperamos que con esta entrada haya quedado claro que:

  1. Los mamíferos (sinápsidos) provienen de un linaje evolutivo diferente al de los reptiles (saurópsidos).
  2. Los saurópsidos incluyen a los “reptiles” tradicionales (lepidosaurios, arcosaurios y tortugas) y a las aves (dentro de los arcosaurios).
  3. Aún queda mucho por investigar sobre la posición de las tortugas (testudinios) dentro del árbol evolutivo de los saurópsidos.
Figure_29_04_03Esquema modificado sobre las relaciones evolutivas entre los diferentes grupos de amniotas.

REFERENCIAS

Para la elaboración de esta entrada se han utilizado las siguientes fuentes:

Difusió-castellà

¿Cómo afectan la temperatura y el calentamiento global al sexo de los reptiles?

En la mayoría de animales el sexo de un individuo queda determinado en el momento de la fecundación; cuando el óvulo y el espermatozoide se fusionan queda fijado si ése animal será un macho o una hembra. Aún así, en muchos grupos de reptiles la determinación sexual viene determinada posteriormente durante la incubación, y el factor que la determina es la temperatura a la que se incuban los huevos. En los reptiles esto hace que, el ambiente juegue un papel crucial en determinar la proporción de machos y hembras que saldrán de una puesta y que por lo tanto, estos animales sean muy susceptibles a alteraciones en la temperatura causadas por ejemplo, por el calentamiento global.

DETERMINACIÓN SEXUAL: DSG VS DST

En la mayoría de especies animales la diferenciación sexual (el desarrollo de ovarios o testículos) viene determinada genéticamente (DSG). En estos casos, el sexo de un individuo viene determinado por un cromosoma, un gen o un alelo concreto que provocará la diferenciación hacia un sexo u otro. Entre los vertebrados, existen dos tipos principales de DSG, el sistema XX/XY en mamíferos (en el que XX es una hembra y XY es un macho) y el ZW/ZZ en aves y algunos peces (ZW corresponde a una hembra y ZZ a un macho).

Types_of_sex_determinationEjemplos de diferentes tipos de determinación sexual genética en vertebrados e invertebrados, por CFCF.

En el caso de los reptiles, existe una gran variedad de mecanismos de determinación sexual. Algunos presentan modelos de DSG; muchas serpientes siguen el sistema ZW/ZZ y algunos lagartos el XX/XY. Igualmente, en muchos grupos el sexo de la descendencia viene determinado principalmente por la temperatura de incubación del huevo (DST), haciendo que el ambiente juegue un papel muy importante en la proporción de machos y hembras que encontramos en una población.

Eastern_Bearded_Dragon_defenceEl dragón barbudo del Este (Pogona barbata) es un ejemplo de reptil con DSG, pero al cual también le afecta la temperatura de incubación. Foto de Trent Townsend.

Aún así, los mecanismos de determinación sexual genética y de temperatura no son excluyentes. Los reptiles con DST tienen una base genética para la diferenciación ovárica o testicular que viene regulada por la temperatura. Igualmente, se ha observado que en reptiles con DSG, como el dragón barbudo australiano (Pogona barbata), las altas temperaturas durante la incubación provocan que individuos que genéticamente son machos (cromosomas ZZ) se desarrollen funcionalmente como hembras. Esto demuestra que en reptiles, no existe una división estricta entre la DSG y la DST.

TEMPERATURA Y SEXO

El periodo de incubación durante el cual se determina el sexo de un individuo se llama periodo de incubación crítico y normalmente corresponde al segundo tercio del periodo de incubación, durante el cual la temperatura se ha de mantener constante. Este periodo de incubación crítico suele durar entre 7 y 15 días, según la especie. Después de este periodo el sexo del individuo normalmente no se puede revertir (mecanismo de todo o nada).

Audobon Zoo, New Orleans, LouisianaCría de dragón de komodo (Varanus komodoensis) eclosionando. Foto de Frank Peters.

La temperatura durante el periodo de incubación crítico altera la función de la aromatasa, hormona que convierte los andrógenos (hormonas masculinizadoras) en estrógenos (hormonas feminizadoras). A temperaturas que dan lugar a machos, la actividad de la aromatasa se inhibe, mientras que a temperaturas que dan lugar a hembras la actividad de la aromatasa se mantiene.

AromatassssssaGráficos de la actividad de la aromatasa respecto las hormonas gonadales en embriones de galápago europeo (Emys orbicularis) a 25oC (machos) y a 30oC (hembras) durante el periodo de incubación crítico, sacado de Pieau et al. 1999.

La DST la encontramos en todos los grupos de reptiles excepto en las serpientes (que siguen el sistema ZW/ZZ). En lagartos y tortugas encontramos tanto determinación sexual genético como por temperatura, mientras que en las tuataras y los cocodrilianos el sexo se determina exclusivamente por la temperatura. Actualmente, se conocen distintos modelos de determinación sexual por temperatura.

MODELO I

Este modelo es el más sencillo, en el que temperaturas de incubación más altas dan lugar a un sexo y temperaturas de incubación más bajas dan lugar al otro sexo. Temperaturas intermedias suelen dar individuos de ambos sexos y, muy raramente, individuos intersexuales. Este modelo está dividido en:

  • Modelo Ia DST: en el que los huevos incubados a temperaturas altas dan altos porcentajes de hembras y huevos a temperaturas bajas dan altos porcentajes de machos. Éste se encuentra en muchas especies de tortugas.
Emys_orbicularis_portraitFoto de galápago europeo (Emys orbicularis), especie que sigue el modelo Ia DST; a 25oC o menos de incubación sólo nacen machos, mientras que a 30oC o más sólo nacen hembras. Foto de Francesco Canu.
  • Modelo Ib DST: en el que pasa lo contrario; las altas temperaturas dan machos y las bajas temperaturas dan hembras. Éste se da en algunos lagartos con DST y los tuataras.
TuataraEl tuatara (Sphenodon punctatus) es uno de los reptiles que siguen el modelo Ib DST; la temperatura límite se encuentra entre 21-22oC, por encima de la cual nacerán machos y por debajo de la cual nacerán hembras.

MODELO II

Este modelo es un poco más complejo que el anterior. En éste, los embriones incubados a temperaturas extremas (muy altas o muy bajas) se diferenciarán hacia un sexo, mientras que los que sean incubados a temperaturas intermedias, se diferenciaran hacia el sexo contrario.

CrocnestFoto de aligátores del Mississippi (Alligator mississippiensis) de diferentes edades. Estos reptiles siguen el modelo II DST; a unos 34oC nacen machos, y a temperaturas por encima y por debajo, nacen hembras.

Este modelo se da en los cocodrilianos, en algunas tortugas y en muchos lagartos. Estudios filogenéticos recientes, indican que éste es el modelo de DST ancestral de los reptiles. Hay quien argumenta, que todos los casos de DST son del modelo II, pero que en la naturaleza nunca se llega a los dos extremos de temperatura, aunque esto aún está por demostrar.

SEXO DETERMINADO POR TEMPERATURA: VENTAJAS E INCONVENIENTES

Hoy en día aún no se entiende del todo las ventajas evolutivas de la determinación sexual por temperatura. El caso de los reptiles es muy curioso, ya que aves, mamíferos y anfibios determinan su sexo genéticamente en la mayoría de casos, mientras que en los reptiles encontramos un poco de todo.

Actualmente, se están realizando estudios para comprobar si algunas temperaturas favorecen la salud de los machos y algunas otras la de las hembras. En uno de estos estudios, se observó que las tortugas mordedoras incubadas a temperaturas intermedias (que producían tanto machos como hembras) eran más activas que las incubadas a temperaturas que daban un único sexo, haciendo que fuesen más vulnerables al ataque de depredadores que se guían visualmente. Aún así, en la actualidad no hay pruebas suficientes que indiquen hasta donde se podrían aplicar estos descubrimientos. Es posible que los reptiles con DST sean capaces de manipular el sexo de su descendencia, alterando la proporción de hormonas sexuales en base a la temperatura del lugar de nidificación.

Snapping_turtle_eggs_mdPuesta de tortuga mordedora (Chelydra serpentina), un quelonio americano de agua dulce. Foto de Moondigger.

Lo que resulta más fácil de predecir son los inconvenientes que comporta la DST. Cualquier cambio que se produzca en la temperatura de las áreas de nidificación puede afectar negativamente a la población de una especie determinada. Si se tala un bosque donde antes había sombra o se construyen edificios en una zona previamente soleada, cambiarán los microclimas de las puestas de huevos de cualquier reptil que nidifique allí.

El cambio global, o cambio climático, representa una amenaza adicional para los reptiles con DST. El aumento de la temperatura media del planeta y las fluctuaciones de temperatura de un año al otro, afectan al número de machos y hembras que nacen de algunas especies de reptiles. Este fenómeno se ha observado, por ejemplo, en las tortugas pintadas (Chrysemys picta), en las cuales se ha predicho que un aumento de 4oC en la temperatura de su hábitat provocaría la extinción de la especie, ya que sólo nacerían hembras.

baby-painted-turtle-chrysemys-pictaCría de tortuga pintada (Chrysemys picta), especie en la que temperaturas de incubación de entre 23-27oC dan machos y temperaturas por encima o por debajo dan hembras (modelo II). Foto de Cava Zachary.

REFERENCIAS

Durante la elaboración de esta entrada se han utilizado las siguientes fuentes:

Difusió-castellà